Page 2 of 7 FirstFirst 1234 ... LastLast
Results 26 to 50 of 165
Like Tree41Likes

Thread: HSC 2016 Chemistry Marathon

  1. #26
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Correct! 4/4
    NEXT QUESTION:
    "The carbon dioxide released from combustion of bio-ethanol is balanced by carbon dioxide captured through photosynthesis. Therefore combustion of bio-ethanol does not increase the total amount of carbon dioxide in the atmosphere. Thus, bio-ethanol has attracted attention as a carbon-neutral fuel - an energy source effective as a countermeasure to global warming."

    Critically evaluate the statement above with reference to ethanol being a 'carbon-netrual' fuel. Support your answer with relevant chemical equations (5 marks)

  2. #27
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by RachelGreen View Post
    Petroleum is a non-renewable fossil fuel, and supplies are being rapidly depleted due to heavy demands for petrochemicals for a variety of uses such as fuels, plastics, lubricants, solvents etc. The demand is increasing as world's populations increases. Consequently, crude oil is being rapidly depleted due to HIGH demand and limited crude oil reserves. Furthermore, the need for alternative sources of petrochemical products derivatives come down to two significant points: environmental impact and scarcity.

    - Majority of crude oil is used up as a fuel, the consumption of fuel products is detrimental upon the environment which releases pollutants in the atmosphere (octane - major component of petrol, burns incompletely). In comparison to other potential fuels such as ethanol, the current petrol products burns relatively uncleanly, leading to environmental problems.

    - Most polymers are currently derived from petroleum are currently non-biodegradable which places a considerable strain on our landfills. Alternative sources esp. biopolymers, are biodegrable and would alleviate such problems

    - Another reason why alternative sources are needed because petrochemical products are derived from non-renewable sources of crude oil, with chemists placing the lifespan on current petroleum supplies well under 50 years, alternative sources are required simply due unsustainable trends

    Alternatives sources such as biomass may be used, however they are more expensive than crude oil. In addition, using ethanol as an example for alternative sources; new infrastructure needs to be constructed (such as fermentation plants for ethanol), a process which takes time and money and just isn't economically viable currently.

    84% of crude oil is used to produce energy. This includes petrol and diesel for cars. Potential alternative sources too alleviate these problems would be ethanol where it will meet with not only future energy needs, but with material needs as well. Ethanol can be produced by fermenting sugars from sugar cane crops:
    C6H12O6 (aq) ----(yeast enzymes) ---> 2C2H5OH (aq) + 2CO2(g)

    Benefits:
    - Ethanol is able to be used as a petrol supplement, because it undergoes combustion: C2H5OH (l) + 3O2 (g) -> 2CO2 (g) + 3H2O (l) + heat
    It can be used as a substitute because it is a renewable resource as it is manufactured from carbohydrates such as glucose and starch that are produced by photosynthesis by plants. The products of its combustion (CO2 and H2O) are the reacts needed by plants for photosynthesis: 6CO2 (g) +
    6H2O (l) ----light----> C6H12O6 (aq) + 6O2 (g)

    - Burns completely in oxygen (cleaner burning fuel) in contrast to other fuels that undergoes incomplete combustion thus producing toxic CO and carcinogenic soot

    Ethanol combined with its high energy-per-mole output, cleaner burning nature and ease of transport, ethanol has great potential as an alternative fuel.

    Please correct my response!

    NEXT QUESTION:
    Outline two methods of producing ethanol. In your answer, construct chemical equations to demonstrate ONE renewable and ONE non-renewable method of ethanol production. (4 marks)
    Although I'm tired and can't absorb things in fully, I'd still say solid 6/6!

    NEXT QUESTION:
    A galvanic cell was set up as so: Cu(s)|CuSO4(aq)||AgNO3(aq)|Ag(s)
    (a) Explain the purpose of a salt bridge in this cell. (2)
    (b) Write down the net ionic equation of this cell and calculate the voltage it should produce. (2)
    (c) When this experiment was performed in the laboratory, the values were inconsistent with that as calculated. Give three reasons as to why this may have been the case. (3)

  3. #28
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by RachelGreen View Post
    Correct! 4/4
    NEXT QUESTION:
    "The carbon dioxide released from combustion of bio-ethanol is balanced by carbon dioxide captured through photosynthesis. Therefore combustion of bio-ethanol does not increase the total amount of carbon dioxide in the atmosphere. Thus, bio-ethanol has attracted attention as a carbon-neutral fuel - an energy source effective as a countermeasure to global warming."

    Critically evaluate the statement above with reference to ethanol being a 'carbon-netrual' fuel. Support your answer with relevant chemical equations (5 marks)
    I missed this question at the time. Admittedly, I also struggled when I was studying trying to answer this question.
    ------------------------------------------------------
    Combustion of ethanol: C2H5OH + 3 O2 -> 2 CO2 + 3 H2O
    Photosynthesis: 6 CO2 + 6 H2O -(UV)-> C6H12O6 + 6 O2
    Fermentation of glucose to produce bioethanol: C6H12O6 -(yeast)-> 2 C2H5OH + 2 CO2

    Primarily, bio-ethanol attracts attention as it can be considered a renewable energy source. It serves as a potential alternative to current fuel sources in petrol.

    The equations given do imply that through the process of producing/using ethanol, the ability for plants to photosynthesise does indeed suggest its limited impact on contribution to CO2, hence seemingly providing supporting evidence for the justification. However, there are various other factors to consider in this process. Our current sources of biomass are mostly from dead plant matter, and to ensure we will always have sufficient amount of plants to undergo photosynthesis, there requires extensive arable land required to allow these plants to grow. The process of fermentation of glucose is also highly energy demanding, and sufficient energy can only be provided through alternate means. The easiest alternative to seek out becomes fossil fuels, which is what we seek to avoid in this process to reduce CO2 emissions. When considering these extrinsic factors, the statement is rather inaccurate as it limits itself to only a very narrow range of considerations.

  4. #29
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    I think you should talk more about how the whole processes absorbs and returns the same amount of CO2(g) in the atmosphere. Anyways, I'll just write what theyve here:
    Bioethanol is produced by the fermentation of plant glucose, initially formed from CO2(g) and H2O(l) by the action of sunlight and the catalyst chlorophyll:
    6CO2(g) + 6H2O(l) --(light,chlorophyll)--> C6H12O6 (glucose)

    Six molecules of CO2(g) are ABSORBED in this process. The plant glucose is fermented to ethanol using the catalyst zymase (present in yeast):
    C6H12O6---(zymase)--->2C2H5OH + 2CO2(g)
    In this process, 2 molecules of CO2(g) are returned into the atmosphere. A further 2 molecules are RETURNED for every molecule of ethanol burned (Notice the ratios between ethanol and CO2 - 1:2).

    Combustion: 2C2H5OH + 7O2(g) -----> 4CO2(g) + 6H2O (l) + E
    If all of the ethanol in the above equation was combusted/burned, four molecules of CO2(g) would be returned to the atmosphere.

    This whole process absorbs and returns the same amount of CO2(g) to the atmosphere. In this respect it is 'CARBON NEUTRAL'. However, this does not take into account the energy consumed in the manufacturing process such as:
    - energy required to maintain the fermentation vats at the correct temperature and conditions
    - energy required to distill the bioethanol from a concentration of 15% to 95-100%
    - energy required to store and transport the fuel to the consumer

    Because of this, the entire process cannot be considered completely 'carbon neutral' even though it is still more carbon neutral than the combustion fo fossil fuels is only discharged into the atmosphere.


    I will have a go at your question later, I just came home from the city

  5. #30
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    NEXT QUESTION:
    A galvanic cell was set up as so: Cu(s)|CuSO4(aq)||AgNO3(aq)|Ag(s)
    (a) Explain the purpose of a salt bridge in this cell. (2)
    (b) Write down the net ionic equation of this cell and calculate the voltage it should produce. (2)
    (c) When this experiment was performed in the laboratory, the values were inconsistent with that as calculated. Give three reasons as to why this may have been the case. (3)[/QUOTE]


    (a) The salt bridge maintains electrical neutrality and completes the circuit by allowing the migration of ions to occur between the two half-cells, hence allowing the cell to continue functioning.
    [Additional information]. Since electrons are being removed from the anode, the anode compartment becomes more electron deficient (as a result, becomes more positively charged). Oppositely, the cathode compartment becomes more negatively charged due to excess electrons. Therefore, if electrons were the only moving charged particles, there would be an electrical imbalance and the cell wouldn't function. That is why salt bridges are required in galvanic cells, to maintain electrical neutrality

    (b) Having problems?? Does the left side (Cu(s)|CuSO4(aq)) correspond to the anode compartment and the right side corresponds to the cathode compartment? Confused, need to work on this

    (c) Cell voltages obtained in the laboratory was inconsistent due to a few reasons:
    - Reliability is absolute crap by the looks of it. The experiment should be repeated many times, until consistent, similar results are obtained.
    - While the concentrations were kept at approx. to 1M (1 significant figure), we could not ensure standard conditions were maintained i.e. solute concentration of 1.000mol/L (4 sign. figures), temperature of 25 degrees celsius, and pressure of 100.0kPA. This may have voltages slightly
    - There may have been impurities in the electrolyte solution
    - The metal may have not been completely pure. To solve this problem, use emery paper to clean the electrodes to remove oxide layers and other impurities
    - The voltmeter had markings only at every 0.1V increment so there may have been errors reading the values of the analogue voltmeter. This could be improved by having a digital voltmeter.


    Done and dusted

  6. #31
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    NEXT QUESTION:
    A student decided to set up a galvanic cell containing the Zn(s)|Zn2+(aq) redox couple to power his gaming device.

    Which other redox couple should be used so that the student's galvanic cell will have the largest possible voltage? In your answer, explain your answer with calculations.
    Here are your options:
    (a) K(s)|K+ (aq)
    (b) Cu(s)|Cu2+ (aq)
    (c) H+(aq) | H2(g)
    (d) Ag(s)|Ag+(aq)

    Telling it now, the answer is not A.

  7. #32
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    With your question that I answered, yes I didn't fully relate the equations because I didn't exactly state how many moles was involved (idk why). Other than that it was fine.

    Quote Originally Posted by RachelGreen View Post
    NEXT QUESTION:
    A galvanic cell was set up as so: Cu(s)|CuSO4(aq)||AgNO3(aq)|Ag(s)
    (a) Explain the purpose of a salt bridge in this cell. (2)
    (b) Write down the net ionic equation of this cell and calculate the voltage it should produce. (2)
    (c) When this experiment was performed in the laboratory, the values were inconsistent with that as calculated. Give three reasons as to why this may have been the case. (3)


    (a) The salt bridge maintains electrical neutrality and completes the circuit by allowing the migration of ions to occur between the two half-cells, hence allowing the cell to continue functioning.
    [Additional information]. Since electrons are being removed from the anode, the anode compartment becomes more electron deficient (as a result, becomes more positively charged). Oppositely, the cathode compartment becomes more negatively charged due to excess electrons. Therefore, if electrons were the only moving charged particles, there would be an electrical imbalance and the cell wouldn't function. That is why salt bridges are required in galvanic cells, to maintain electrical neutrality

    (b) Having problems?? Does the left side (Cu(s)|CuSO4(aq)) correspond to the anode compartment and the right side corresponds to the cathode compartment? Confused, need to work on this

    (c) Cell voltages obtained in the laboratory was inconsistent due to a few reasons:
    - Reliability is absolute crap by the looks of it. The experiment should be repeated many times, until consistent, similar results are obtained.
    - While the concentrations were kept at approx. to 1M (1 significant figure), we could not ensure standard conditions were maintained i.e. solute concentration of 1.000mol/L (4 sign. figures), temperature of 25 degrees celsius, and pressure of 100.0kPA. This may have voltages slightly
    - There may have been impurities in the electrolyte solution
    - The metal may have not been completely pure. To solve this problem, use emery paper to clean the electrodes to remove oxide layers and other impurities
    - The voltmeter had markings only at every 0.1V increment so there may have been errors reading the values of the analogue voltmeter. This could be improved by having a digital voltmeter.


    Done and dusted
    b) Use your table of standard reduction potentials to find out which is the cathode and the anode.
    Cu(s) + 2 Ag+ -> Cu2+ + 2 Ag(s)
    Bottom one is always more readily reduced than oxidised
    (The notation only means that we have a galvanic cell; it does not matter which side is the cathode or the anode)
    c) 1M, 100kPa pressure and 25deg C was enough
    Reliability - Although I have no problems with this, it's not the first thing the examiners have in mind when giving this sort of question
    Accuracy - This one is irrelevant
    Impurities - Doesn't matter, as Cu(s) can only correspond to CuSO4, as can Ag(s) only correspond to AgNO3
    RachelGreen likes this.

  8. #33
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by RachelGreen View Post
    NEXT QUESTION:
    A student decided to set up a galvanic cell containing the Zn(s)|Zn2+(aq) redox couple to power his gaming device.

    Which other redox couple should be used so that the student's galvanic cell will have the largest possible voltage? In your answer, explain your answer with calculations.
    Here are your options:
    (a) K(s)|K+ (aq)
    (b) Cu(s)|Cu2+ (aq)
    (c) H+(aq) | H2(g)
    (d) Ag(s)|Ag+(aq)

    Telling it now, the answer is not A.
    a) 2 K(s) + Zn 2+ -> 2 K+ + Zn(s) EMF = 2.94-0.76 = 2.18V - why not? You always flip the sign on the one that gets oxidised.
    b) Zn(s) + Cu+ -> Cu(s) + Zn 2+ EMF = 0.76+0.34 = 1.10V
    c) Zn(s) + 2 H+ -> H2(g) + Zn 2+ EMF = 0.76V
    d) Zn(s) + 2 Ag+ -> 2 Ag(s) + Zn 2+ EMF = 0.76+0.80 = 1.56V
    Last edited by leehuan; 8 Nov 2015 at 9:05 AM.

  9. #34
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Yeah I know you always flip the sign on the one that gets oxidised but I don't understand why it's not A and not D. Confusing me tbh

  10. #35
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    I don't see any reason for it not to be A. Mind showing the source of your question?

  11. #36
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Nevermind, I'm convinced it's incorrect now. Yeah it's A dw.

    NEXT QUESTION:
    To determine the concentration of Fe2+ ions in a sample of tank water, a student conducted a titration of a sample against a standard solution of potassium permanganate.

    The reaction that occurs during the titration can be represented:

    5Fe2+ (aq) + MnO4- (aq) + 8H+ (aq) -> 5Fe3+ (aq) + Mn2+ (aq) + 4H2O (l)

    The unknown Fe2+ solution was titrated against 20.00mL of standard 0.0250M potassium permanganate in three trials.
    An average of 32.50mL of tank water sample was required to change the colour of the solution in the conical flask from purple to colourless, which is the end-point in this titration.

    (a) Calculate the CHANGE in oxidation number of manganese (Mn) that occurs as the titration proceeds and hence determine if the Mn is oxidized or reduced during the titration. (1M)

    (b) Calculate the moles of potassium permanganate present in the conical flask during each trial. (1M)

    (c) Calculate the mass of iron present as Fe2+ in 100mL of the tank water. (3M)

  12. #37
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by RachelGreen View Post
    Nevermind, I'm convinced it's incorrect now. Yeah it's A dw.

    NEXT QUESTION:
    To determine the concentration of Fe2+ ions in a sample of tank water, a student conducted a titration of a sample against a standard solution of potassium permanganate.

    The reaction that occurs during the titration can be represented:

    5Fe2+ (aq) + MnO4- (aq) + 8H+ (aq) -> 5Fe3+ (aq) + Mn2+ (aq) + 4H2O (l)

    The unknown Fe2+ solution was titrated against 20.00mL of standard 0.0250M potassium permanganate in three trials.
    An average of 32.50mL of tank water sample was required to change the colour of the solution in the conical flask from purple to colourless, which is the end-point in this titration.

    (a) Calculate the CHANGE in oxidation number of manganese (Mn) that occurs as the titration proceeds and hence determine if the Mn is oxidized or reduced during the titration. (1M)

    (b) Calculate the moles of potassium permanganate present in the conical flask during each trial. (1M)

    (c) Calculate the mass of iron present as Fe2+ in 100mL of the tank water. (3M)
    a) In MnO4(-) manganese has an oxidation state of +7. The manganese ion has an oxidation state of +2. Hence, change in oxidation state = -5
    b) n=CV -> n=0.0250*20.00*10^-3=5.00*10^-4mol
    c) From the given equation, we have n(Fe2+) = 5*n(MnO4-) = 2.5*10^-3mol
    Concentration of MnO4- in titration: C=n/V -> C=(2.5*10^-3)/(32.50*10^-3)=1/13 mol L^-1
    Our tank has a volume of 0.100L
    So in our tank, n=1/13*0.100 = 1/130 mol
    So m = 1/130 * (4*16+54.94) = 0.9149230769...g = approx 9.15*10^-1 g (1s.f.)

    I just rushed this so I could have made a silly mistake somewhere
    ---------------------------------------------------------------------
    NEXT QUESTION:
    Account for a radioisotope used in medicine and relate properties to it's use. (4)
    Last edited by leehuan; 10 Nov 2015 at 8:22 AM.

  13. #38
    Member
    Join Date
    Dec 2014
    HSC
    2016
    Gender
    Male
    Posts
    336
    Rep Power
    3

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    NEXT QUESTION:
    Account for a radioisotope used in medicine and relate properties to it's use. (4)
    Cobalt-60 is used in medicine to irradiate cancerous cells in radiotherapy. Cobalt-60 has a half life of about 5 years which means it can last for a substantial period of time before needing replacement delivering the dosages required. Furthermore, cobalt-60 is useful for radiotherapy as the gamma rays emitted in beta emission which it undergoes have sufficient penetrating and ionising power to attack cancerous cells. It is this power that kills cancerous cells.

    Honestly probably not the best answer, though I haven't learnt in school yet.

    NEXT QUESTION: What is the oxidising agent in the following reaction?
    Maths Extension 2 | Maths Extension 1 | Physics | Chemistry | Advanced English

  14. #39
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by Ambility View Post
    Cobalt-60 is used in medicine to irradiate cancerous cells in radiotherapy. Cobalt-60 has a half life of about 5 years which means it can last for a substantial period of time before needing replacement delivering the dosages required. Furthermore, cobalt-60 is useful for radiotherapy as the gamma rays emitted in beta emission which it undergoes have sufficient penetrating and ionising power to attack cancerous cells. It is this power that kills cancerous cells.

    Honestly probably not the best answer, though I haven't learnt in school yet.

    NEXT QUESTION: What is the oxidising agent in the following reaction?
    Wow. I had to pull out Google to realise Co-60 was also used in medicine. 3/4 though mainly cause information is lacking, which is probably due to you haven't learnt it yet.
    ------------------
    The dichromate ion, as chromium is reduced from +6 to +3.
    ------------------
    NEXT QUESTION:
    Describe two processes used to produce transuranic elements and briefly contrast the products. Give relevant equations to support your answer. (5)

  15. #40
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    NEXT QUESTION:
    Describe two processes used to produce transuranic elements and briefly contrast the products. Give relevant equations to support your answer. (5)
    Thread revival.

    There should be enough of you that have done this now.

  16. #41
    Member
    Join Date
    Dec 2014
    HSC
    2016
    Gender
    Male
    Posts
    336
    Rep Power
    3

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    Thread revival.

    There should be enough of you that have done this now.
    Not yet, doing it tomorrow
    Maths Extension 2 | Maths Extension 1 | Physics | Chemistry | Advanced English

  17. #42
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Hm, maybe I did rush a bit then.

    REPLACEMENT QUESTION (in the meantime):

    leehuan needs to perform an experiment to deduce the molar heat of combustion of various alkanols. He was given excess samples of ethanol, propan-1-ol, butan-1-ol and pentan-1-ol in respective spirit burners.
    a) leehuan needs to perform this experiment in the laboratory. Suggest a suitable method for him to use. (3)
    b) When arriving at the final results, he finds that his values are always lower than the theoretical value. Explain why this is inevitable and justify possible solutions to minimise the difference in results. (4)
    c) Write down the equation for complete combustion of pentan-1-ol. (1)

  18. #43
    New Member
    Join Date
    Dec 2015
    HSC
    2016
    Gender
    Undisclosed
    Posts
    2
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    Thanks! True that though, so I'll answer a few questions every now and then to promote activity as well as possible. Maybe one every 2-3 days when there isn't a previous answer. Later on I'll just let the thread flow.



    Although I didn't use the word "compare" or "contrast", it helps to state that alkanes only have single bonds within the hydrocarbon chain structure, which are typically chemically unreactive. The third mark was a bit hidden, and required you to justify the process - we can say that the double bond is easily opened up through interaction with other molecules, for example, through addition reactions or polymerisation. Alternatively, use the bromine water practical equations (if you have done so).
    Hexane: C6H14(l) + HOBr(l) -(UV)-> C6H12BrOH(l) + H2(g)
    1-hexene: C6H12(l) + HOBr(l) -> C6H12BrOH(l)
    This is acceptable as the necessity of UV to force a substitution reaction is obviously more energy consuming than the simple addition reaction.

    Maybe 1/3, but keep trying!
    I'm a student from the US, but I learned that the alkene series is generally more reactive then the alkane series because of the following.

    Bonding can be perceived as the overlap of electron orbitals. A sigma bond (the only bond in an alkane) is a covalent bond formed by head on overlap of atomic orbitals/hybrid orbitals along the bond axis. They have good orbital overlap, strong bonding due to the shorter bonds and the electron density is symmetric about the internuclear axis.

    A double bond is made of a pi bond and a sigma bond (one head on and one overlap). A pi bond is a bond formed by the sideways overlap of p orbitals on adjacent atoms, perpendicular to any sigma bonds between the same atoms. A pi bond has 2 orbital lobes, 1 above and below the planes of the sigma bond and they are weaker than sigma bonds due to the poorer orbital overlap and hence more reactive.

    Here's a little diagram of a triple bond with 2 pi bonds. The overlap breaking more easily due to being weaker is what makes alkenes more reactive than alkanes. Note (i'm not saying anything about alkynes, just showing you what the orbitals looks like)

    Capture.PNG

  19. #44
    New Member
    Join Date
    Dec 2015
    HSC
    2016
    Gender
    Undisclosed
    Posts
    2
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    Thread revival.

    There should be enough of you that have done this now.
    Transuranic elements are produced by 1) Neutron bombardment or 2) Fusion reactions.
    More early transuranic elements were produced by bombarding heavy elements with neutrons in a reactor. By bombarding U-238, you get U-239 which beta decays to Np-239 and Pu-239 after. Hard to write nuclear equations without the subscripts/superscripts so I'll write them in word.
    U-238 + neutron -> U-239 -> electron + Np-239
    Np-239 -> electron + Pu-239
    You can produce larger transuranic elements by bombarding heavy nuclei with high velocity positively charged particles like He/C nuclei. You have to do this in a particle/linear accelerator or cyclotron because they are charged particles unlike neutrons.
    You can get Cf-246 by bombarding U-238 with a C nuclei in a linear accelerator.
    U-238 + C nucleu -> Cf-246 + 4 neutrons

  20. #45
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by hsccheese View Post
    I'm a student from the US, but I learned that the alkene series is generally more reactive then the alkane series because of the following.

    Bonding can be perceived as the overlap of electron orbitals. A sigma bond (the only bond in an alkane) is a covalent bond formed by head on overlap of atomic orbitals/hybrid orbitals along the bond axis. They have good orbital overlap, strong bonding due to the shorter bonds and the electron density is symmetric about the internuclear axis.

    A double bond is made of a pi bond and a sigma bond (one head on and one overlap). A pi bond is a bond formed by the sideways overlap of p orbitals on adjacent atoms, perpendicular to any sigma bonds between the same atoms. A pi bond has 2 orbital lobes, 1 above and below the planes of the sigma bond and they are weaker than sigma bonds due to the poorer orbital overlap and hence more reactive.

    Here's a little diagram of a triple bond with 2 pi bonds. The overlap breaking more easily due to being weaker is what makes alkenes more reactive than alkanes. Note (i'm not saying anything about alkynes, just showing you what the orbitals looks like)

    Capture.PNG
    I saw this information once. However, the 12th grade chemistry course lacks significant depth in contrast to the full explanation of the reason. But yes, the alkene series is more chemically reactive.

  21. #46
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by hsccheese View Post
    Transuranic elements are produced by 1) Neutron bombardment or 2) Fusion reactions.
    More early transuranic elements were produced by bombarding heavy elements with neutrons in a reactor. By bombarding U-238, you get U-239 which beta decays to Np-239 and Pu-239 after. Hard to write nuclear equations without the subscripts/superscripts so I'll write them in word.
    U-238 + neutron -> U-239 -> electron + Np-239
    Np-239 -> electron + Pu-239
    You can produce larger transuranic elements by bombarding heavy nuclei with high velocity positively charged particles like He/C nuclei. You have to do this in a particle/linear accelerator or cyclotron because they are charged particles unlike neutrons.
    You can get Cf-246 by bombarding U-238 with a C nuclei in a linear accelerator.
    U-238 + C nucleu -> Cf-246 + 4 neutrons
    Yep.
    The marks were for:
    - Two examples correctly identified
    - Equations (1mk for both situations)
    - A process mentioned

  22. #47
    Einstein the idiot Bestintheworld's Avatar
    Join Date
    Jul 2015
    HSC
    2016
    Gender
    Male
    Posts
    445
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Use recent references to find out how particle accelerators are used to discover new transuranic elements. To process the sources you find, assess their reliability by comparing the information provided. Look for consistency of information.(5)
    HSC 2016: Adv. English - 2U Maths - Chemistry - Physics - Biology - Business Studies

    ATAR Aim: 30.05

    Everything comes to us that belongs to us if we create the capacity to receive it. - Tagore

  23. #48
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by Bestintheworld View Post
    Use recent references to find out how particle accelerators are used to discover new transuranic elements. To process the sources you find, assess their reliability by comparing the information provided. Look for consistency of information.(5)
    Don't tell them how to watch out for reliability. That could drop the mark allocation to 4.

    Science students are expected to know what reliability is.

  24. #49
    Cadet
    Join Date
    Oct 2015
    HSC
    2017
    Gender
    Male
    Posts
    84
    Rep Power
    2

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by leehuan View Post
    I saw this information once. However, the 12th grade chemistry course lacks significant depth in contrast to the full explanation of the reason. But yes, the alkene series is more chemically reactive.
    Alkene series being more reactive than the alkane series is due to the high electron density associated with the double bond in alkenes. Isn't this reason a bit more simpler?

  25. #50
    Ancient Orator leehuan's Avatar
    Join Date
    May 2014
    HSC
    2015
    Gender
    Male
    Posts
    5,783
    Rep Power
    6

    Re: HSC Chemistry Marathon 2016

    Quote Originally Posted by RachelGreen View Post
    Alkene series being more reactive than the alkane series is due to the high electron density associated with the double bond in alkenes. Isn't this reason a bit more simpler?
    You don't even need to know why the double bond is more reactive, you just need to know that is. But justification with the high electron density will never lose you any marks though.
    InteGrand likes this.

Page 2 of 7 FirstFirst 1234 ... LastLast

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •