Re: HSC 2013 2U Marathon
Yeah all I got to was changing sec^{2}x to tanx+1.
-----
\indent \frac {d}{dx} (x+sin^{2}(e^{x}))^{4} \\ \\ \indent = 4 \times (x+sin^{2}(e^{x}))^{3} \times (1+2e^{x}cos(e^{x})sin(e^{x})) \\ \\ \indent = (4+8e^{x}cos(e^{x})sin(e^{x})) \times (x+sin^{2}(e^{x}))^{3}