Search results

  1. Fus Ro Dah

    Digits.

    \\ $Find the last three digits of the number $ 7^{9999}
  2. Fus Ro Dah

    Polynomial.

    \\ $Let $ a,b,c $ denote three distinct integers, and let $ P(x) $ be a polynomial with integer coefficients.$ \\\\ $Show that there does NOT exist a polynomial, where $ P(a)=b, P(b)=c $ and $ P(c)=a.
  3. Fus Ro Dah

    Triangle.

    N points are given on the circumference of a circle, and all possible chords are constructed. The points are chosen such that no three chords are concurrent. How many triangles are there with all of its vertices lying inside the circle?
  4. Fus Ro Dah

    Function Composition.

    \\ $Define $ f_n(x)=f_0(f_{n-1}(x)) $ and let $ f_0(x)=\frac{1}{1-x}. \\\\ $Evaluate $ f_{2012}(2012)
  5. Fus Ro Dah

    Integer Triplets.

    \\ $Find all integer triplets $ (x,y,z) $ that satisfy $ x^3+y^3+z^3=(x+y+z)^3
  6. Fus Ro Dah

    Sum of digits.

    \\ $Suppose $ n \in \mathbb{N}. $ Find the sum of the digits appearing in the integers$\\\\ 1,2,3,...,10^n-2,10^n-1
  7. Fus Ro Dah

    Extremely cool square.

    The square given below has the unique property, that the products of the rows, columns, and the two diagonals, yield the same value k. A B C D E F G H I So ABC=DEF=GHI=ADG=BEH=CFI=AEI=CEG=k. Prove that if A,B,..,I are all integers, then k must be a perfect cube.
  8. Fus Ro Dah

    Rationals.

    $Determine all pairs of rational numbers $ (x,y) $ such that $ x^3+y^3=x^2+y^2
  9. Fus Ro Dah

    Sequence.

    \\ $Define the sequence $ T_{n+1} = \frac{T_n}{1+nT_n}. \\\\ $Find the value of T_{2012}.$
  10. Fus Ro Dah

    Stubborn Number.

    \\ $A number $ N $ is said to be 'stubborn' if when multiplied by some positive integer $ k $, the end product always contains the digits $ 0,1,2,...,9 $ in any permutation, allowing repetition.$ \\\\ $Prove, or disprove, that the number $ N=526315789473684210 $ is 'stubborn'. If so, do there...
  11. Fus Ro Dah

    Fibbonaci Identity.

    \\ $The Fibbonaci Sequence $ f_1, f_2,..., f_n $ is defined by $ f_1 = f_2 = 1 $ and $ f_n = f_{n-1} + f_{n-2}, n \geq 3. \\\\ $Let $ Q = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$ Prove that $ Q^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix} $ and hence prove that $ f_{3n}...
  12. Fus Ro Dah

    Quadratic Real Roots

    \\ $Find all positive integers $ n $ for which the quadratic equation$ \\\\ a_{n+1}x^2-2x\sqrt{\sum_{i=1}^{n+1}a_i ^2} + \sum_{i=1}^{n} a_i=0 \\\\ $has real roots $ \forall a_i \in \mathbb{R} $ where $ i \in [1,n+1]
  13. Fus Ro Dah

    Number of terms.

    $Find the number of terms in the expansion of $ \prod_{j=1}^{n}\left (\sum_{i=1}^{j} x_i \right )
  14. Fus Ro Dah

    Polynomials: Schur-Cohn Criterion.

    \\ $Consider the polynomial $ P(x)=x^2+bx+c. $ Show that $ |x_i| < 1 $ if and only if $ |b| < 1+c < 2. \\\\ $ Extend this criterion to a cubic polynomial $ P(x)=x^3+bx^2+cx+d $ by showing that $ |x_i| < 1 $ if and only if $ |bd-c| < 1-d^2 $ and $ |b+d| < |1+c|
  15. Fus Ro Dah

    Infinite Roots.

    \\ $Consider the function $ f(x) = \sqrt{x+a \sqrt x + b} + \sqrt x -c $ for some real constants $ a,b,c. $ For what values of $ a,b,c $ does the function have infinitely many roots?$
  16. Fus Ro Dah

    Greatest root.

    \\ $Consider the polynomial $ P(x) = x^3 - 7x^2 + 14x -7 $, which has roots $ x_i $ for $ i=1,2,3. $ Show that $ \max (x_i) = 4 \cos ^2 \left ( \frac{\pi}{14} \right )
  17. Fus Ro Dah

    Inequality.

    \\ $Define $ P(x,y,z) = \frac{x+1}{xy+x+1} + \frac{y+1}{yz+y+1} + \frac{z+1}{xz+z+1} $ where $ x,y,z \geq 0 $ and $ xyz=1. \\\\ $Find $ \max \left ( P(x,y,z) \right ) $ and $ \min \left ( P(x,y,z) \right ).
  18. Fus Ro Dah

    Polynomials

    Here's a fun question I did a couple weeks ago.
  19. Fus Ro Dah

    Cool Integration Problem

    Here is a neat result. Prove that for all natural numbers N, \int_{0}^{\frac{\pi}{2}} \cos^{2n}x dx = \frac{1}{2^{2n}} \binom{2n}{n}\frac{\pi}{2}
  20. Fus Ro Dah

    Maximising Area

    Consider a straight line and a piece of string with length L. In what shape should the string be made to maximise the area bounded by the straight line and the string, given that the string must touch the line at least once? Give proof.
Top