Re: HSC 2013 4U Marathon
So, substitute x=y=1 to get that f(1)=0
Set y=1+t/x into the identity to get f(x+t)=f(x)+f(1+t/x).
So, f(x+t)-f(x)=f(1+t/x)-f(1)
So, x(f(x+t)-f(x))/t=(f(1+t/x)-f(1))/(t/x)
So, as t goes to 0, the RHS is f'(1), while the LHS is the limit of x((f(x+t)-f(x))/t as...