1997 4u maths
6a) The serues 1-x^2+x^4-.....+x^4n has 2n+1 terms
i) Explain why
1-x^2+x^4-.....+x^4n = [1+x^(4n+2)]/[1+x^2]
ii) Hence show that
1/[1+x^2] <= 1-x^2+x^4-......+x^4n <= 1/[1+x^2] + x^(4n+2)
iii) Hence show that, if 0<=y<=1, then
inv.tan y <= y - (y^3)/3 + (y^5)/5 - ..... + [y^(4n+1)]/[4n+1] <= inv.tan y + 1/[4n+3]
iv) Deduce that 0 < (1 - 1/3 - 1/5 - ..... + 1/1001) - pi/4 < 10^-3
need help on this thx very much =)
6a) The serues 1-x^2+x^4-.....+x^4n has 2n+1 terms
i) Explain why
1-x^2+x^4-.....+x^4n = [1+x^(4n+2)]/[1+x^2]
ii) Hence show that
1/[1+x^2] <= 1-x^2+x^4-......+x^4n <= 1/[1+x^2] + x^(4n+2)
iii) Hence show that, if 0<=y<=1, then
inv.tan y <= y - (y^3)/3 + (y^5)/5 - ..... + [y^(4n+1)]/[4n+1] <= inv.tan y + 1/[4n+3]
iv) Deduce that 0 < (1 - 1/3 - 1/5 - ..... + 1/1001) - pi/4 < 10^-3
need help on this thx very much =)