Originally posted by ezzy85
Prove 7<sup>n</sup> + 13<sup>n</sup> + 19<sup>n</sup> is a multiple of 13, if n is odd.
Thanks
Prove case for n=1
7+13+19 = 39 which is multiple of 13 *tick*
Assume case true for n= k (k is odd)
then let 7<sup>k</sup> + 13<sup>k</sup> + 19<sup>k</sup> = 13M (M is a positive integer)
Then for n=k+2 (the next odd integer)
7<sup>k+2</sup> + 13<sup>k+2</sup> + 19<sup>k+2</sup>
= 49*7<sup>k</sup> + 169*13<sup>k</sup> + 361*19<sup>k</sup>
= 49*13M + 120*13<sup>k</sup> + 312*19<sup>k</sup>
=13*(49M + 120*13<sup>k-1</sup> + 24*19<sup>k</sup> )
= integer multiple of 13
Thus proven by maths induction