spice girl
magic mirror
- Joined
- Aug 10, 2002
- Messages
- 785
1) Let A_1, A_2, ..., A_n represent the nth roots of unity w_1, w_2, ..., w_n. Suppose P represents z such that |z| = 1
(btw, w_1 is omega subscript 1, etc)
i) Prove w_1 + w_2 + ... + w_n = 0
ii) Show that |PA_i|^2 = (z-w_i)(z(bar) - w_i(bar)) (for all i = 1, 2, ..., n)
iii) Hence prove |PA_1|^2 + |PA_2|^2 + ... + |PA_n|^2 = 2n
(btw, w_1 is omega subscript 1, etc)
i) Prove w_1 + w_2 + ... + w_n = 0
ii) Show that |PA_i|^2 = (z-w_i)(z(bar) - w_i(bar)) (for all i = 1, 2, ..., n)
iii) Hence prove |PA_1|^2 + |PA_2|^2 + ... + |PA_n|^2 = 2n