LHS = [sin(2x) + cos(2x)] / [2cos(x) + sin(x) - 2{cos3(x) + sin3(x)}]
Let s = sin(x), c = cos(x)
Thus, we have:
sin(2x) = 2sc, cos(2x) = 2c2 - 1
cos3(x) + sin3(x) = (s+c)(s2 - cs + c2) = (s+c)(1-cs)
Thus, LHS = (2sc + 2c2 - 1) / (2c + s - 2(s+c)(1-cs))
= (2sc + 2c2 - 1) / (2c + s - 2(c- c2s + s - cs2))
= (2sc + 2c2 - 1) / (2c + s - 2c + 2c2s - 2s + 2cs2)
= (2sc + 2c2 - 1) / (2c2s + 2cs2 - s)
= (2sc + 2c2 - 1) / (s(2c2 + 2cs - 1))
= 1/s
= 1/sin(x)
= cosec(x)
= RHS #