a friend sent me this:
part (i)
show that:
sum of series
n
E (z+z^2+......z^k) = nz/(1-z) - z^2(1-z^n)/(1-z)^2
k=1
part (ii)
let z= cos@+isin@, where 0<@<2pi
deduce that
n
E (sin@+sin2@...........+sink@)
k=1
= ((n+1)sin@ - sin(n+1)@)/4sin^2 (@/2)
you may assume that
z/(1-z) = i(cis(@/2))/2sin(@/2)
i got very close but.............yeah
part (i)
show that:
sum of series
n
E (z+z^2+......z^k) = nz/(1-z) - z^2(1-z^n)/(1-z)^2
k=1
part (ii)
let z= cos@+isin@, where 0<@<2pi
deduce that
n
E (sin@+sin2@...........+sink@)
k=1
= ((n+1)sin@ - sin(n+1)@)/4sin^2 (@/2)
you may assume that
z/(1-z) = i(cis(@/2))/2sin(@/2)
i got very close but.............yeah