Question:
i) Find roots of z^5 + 1 = 0
ii) Factor z^5 + 1
iii) Deduce cos(pi/5) + cos(3pi/5) = 1/2
and cos(pi/5)*cos(3pi/5) = -1/4
iv) <Maybe Later>
Answer:
i) Easyish: 1, +/- cos(pi/5), +/- cos(3pi/5)
ii)Little Harder: z^5 +1 = (z + 1)(z^2 - 2zcos(pi/5) + 1)(z^2 - 2zcos(3pi/5) + 1)
iii) Expand from ii)
z^5 - 1 = (z + 1)(z^4 - 2z^3cos(3pi/5) + z^2 - 2z^3cos(pi/5) + 4z^2cos(pi/5)cos(3pi/5) - 2zcos(pi/5) +z^2 - 2zcos(3pi/5) + 1 )
z^5 - 1 = (z^5 - 2z^4cos(3pi/5) + 2z^3 - 2z^4cos(pi/5) + 4z^3cos(pi/5)cos(3pi/5) - 2z^2cos(pi/5) - 2z^2cos(3pi/5) + z)
+ (z^4 - 2z^3cos(3pi/5) + z^2 - 2z^3cos(pi/5) + 4z^2cos(pi/5)cos(3pi/5) - 2zcos(pi/5) +z^2 - 2zcos(3pi/5) + 1)
z^5 - 1 = z^5 - z^4(2cos(3pi/5) + 2cos(pi/5) - 1) + z^3(2 + 4cos(pi/5)cos(3pi/5) - 2cos(3pi/5) - 2cos(pi/5)) - z^2(2cos(pi/5) + 2cos(3pi/5) - 2 - 4cos(pi/5)cos(3pi/5)) + z(1 - 2cos(pi/5) - 2cos(3pi/5)) + 1
(equate coefficients of z):
0 = 1 - 2cos(pi/5) - 2cos(3pi/5)
cos(pi/5) + cos(3pi/5) = 1/2
(equate coefficients of z^3):
0 = 2 + 4cos(pi/5)*cos(3pi/5) -2cos(pi/5) - 2cos(3pi/5)
cos(pi/5)*cos(3pi/5) = -1/4
i) Find roots of z^5 + 1 = 0
ii) Factor z^5 + 1
iii) Deduce cos(pi/5) + cos(3pi/5) = 1/2
and cos(pi/5)*cos(3pi/5) = -1/4
iv) <Maybe Later>
Answer:
i) Easyish: 1, +/- cos(pi/5), +/- cos(3pi/5)
ii)Little Harder: z^5 +1 = (z + 1)(z^2 - 2zcos(pi/5) + 1)(z^2 - 2zcos(3pi/5) + 1)
iii) Expand from ii)
z^5 - 1 = (z + 1)(z^4 - 2z^3cos(3pi/5) + z^2 - 2z^3cos(pi/5) + 4z^2cos(pi/5)cos(3pi/5) - 2zcos(pi/5) +z^2 - 2zcos(3pi/5) + 1 )
z^5 - 1 = (z^5 - 2z^4cos(3pi/5) + 2z^3 - 2z^4cos(pi/5) + 4z^3cos(pi/5)cos(3pi/5) - 2z^2cos(pi/5) - 2z^2cos(3pi/5) + z)
+ (z^4 - 2z^3cos(3pi/5) + z^2 - 2z^3cos(pi/5) + 4z^2cos(pi/5)cos(3pi/5) - 2zcos(pi/5) +z^2 - 2zcos(3pi/5) + 1)
z^5 - 1 = z^5 - z^4(2cos(3pi/5) + 2cos(pi/5) - 1) + z^3(2 + 4cos(pi/5)cos(3pi/5) - 2cos(3pi/5) - 2cos(pi/5)) - z^2(2cos(pi/5) + 2cos(3pi/5) - 2 - 4cos(pi/5)cos(3pi/5)) + z(1 - 2cos(pi/5) - 2cos(3pi/5)) + 1
(equate coefficients of z):
0 = 1 - 2cos(pi/5) - 2cos(3pi/5)
cos(pi/5) + cos(3pi/5) = 1/2
(equate coefficients of z^3):
0 = 2 + 4cos(pi/5)*cos(3pi/5) -2cos(pi/5) - 2cos(3pi/5)
cos(pi/5)*cos(3pi/5) = -1/4