First I considered the expansion of
(1 + x)<sup>n</sup> = <sup>n</sup>C<sub>0</sub> + <sup>n</sup>C<sub>1</sub>x + ... + <sup>n</sup>C<sub>n</sub>x<sup>n</sup>
I differentiated both side with respect to x, and got
n(1+x)<sup>n</sup> = <sup>n</sup>C<sub>1</sub> + 2<sup>n</sup>C<sub>2</sub>x + ... + n<sup>n</sup>C<sub>n</sub>x<sup>n-1</sup>
I multiplied both side by x, and got
nx(1+x)<sup>n</sup> = <sup>n</sup>C<sub>1</sub>x + 2<sup>n</sup>C<sub>2</sub>x<sup>2</sup> + ... + n<sup>n</sup>C<sub>n</sub>x<sup>n</sup>
then I differentiated both side :
LHS = <sup>d</sup>/<sub>dx</sub>nx(1+x)<sup>n</sup>
= n(1+x)<sup>n-1</sup> + nx(n-1)(1+x)<sup>n-2</sup>
now:
RHS = <sup>d</sup>/<sub>dx</sub> (<sup>n</sup>C<sub>1</sub>x + 2<sup>n</sup>C<sub>2</sub>x<sup>2</sup> + ... + n<sup>n</sup>C<sub>n</sub>x<sup>n</sup>)
= <sup>n</sup>C<sub>1</sub> + (2<sup>2</sup>)<sup>n</sup>C<sub>2</sub>x<sup></sup> + ... + (n<sup>2</sup>)<sup>n</sup>C<sub>n</sub>x<sup>n-1</sup>
and LHS = RHS still.
if we let x = 1, RHS is the expression at the beginning (ie the question). Hence, the sum of the expression = LHS when x =1
LHS simplifies to, when we sub x = 1 :
= (n<sup>2</sup> + n)(1+x)<sup>n-2</sup>
which is the required sum.
damn.. I actually went checking Tk / Tk+1 ratio for one hour (had no idea what to do) before I finally realised that to get the answer you have to do differentiation tricks..