smallcattle said:
CD^2 + CE^2 = DE^2
CD^2 + (CE+EA)^2 = DA^2
CD^2 + CE^2 + 2CEEA + EA^2 = DA^2
DE^2 + 2CEEA + EA^2 = DA^2
CE=EA (diagonals bisect each other in parallelgram)
DE^2 + 2EA^2 + EA^2 = DA^2
therefore DE^2 + 3EA^2 = DA^2
To make it simpler for you at home to read:::
CD<sup>2</sup> + CE<sup>2</sup> = DE<sup>2</sup>
CD<sup>2</sup> + (CE+EA)<sup>2</sup> = DA<sup>2</sup>
CD<sup>2</sup> + CE<sup>2</sup> + 2CEEA + EA<sup>2</sup> = DA<sup>2</sup>
DE<sup>2</sup> + 2CEEA + EA<sup>2</sup> = DA<sup>2</sup>
CE = EA (diagonals bisect each other in parallelogram)
DE<sup>2</sup> + 2EA<sup>2</sup> + EA<sup>2</sup> = DA<sup>2</sup>
Therefore, DE<sup>2</sup> + 3EA<sup>2</sup> = DA<sup>2</sup>
Better?