Hard induction question (1 Viewer)

Jackson94

Member
Joined
Jun 5, 2010
Messages
44
Gender
Male
HSC
2012
Prove by induction that (cosθ + isinθ)^n = cos(nθ) + isin(nθ) for all integers n is greater than or equal to 1
 

httton

Member
Joined
Mar 5, 2011
Messages
51
Gender
Undisclosed
HSC
2012
or what you can do is use angle sum formulas
 

tohriffic

Member
Joined
Jul 22, 2011
Messages
35
Location
Under your bed.
Gender
Female
HSC
2012
Let n = 1,
<img src="http://latex.codecogs.com/gif.latex?LHS = (cos\theta + isin\theta)^{1}" title="LHS = (cos\theta + isin\theta)^{1}" />
<img src="http://latex.codecogs.com/gif.latex?= (cos(1\theta) + isin(1\theta))" title="= (cos(1\theta) + isin(1\theta))" />

<img src="http://latex.codecogs.com/gif.latex?RHS = cos (1\theta) + isin(1\theta)" title="RHS = cos (1\theta) + isin(1\theta)" />
<img src="http://latex.codecogs.com/gif.latex?=LHS" title="=LHS" />

Therefore this rule is true for n = 1.

Assume for n = k, the above rule is satisfied.

Required to prove: k+1
<img src="http://latex.codecogs.com/gif.latex?LHS = (cos\theta+isin\theta)^{k+1}" title="LHS = (cos\theta+isin\theta)^{k+1}" />
<img src="http://latex.codecogs.com/gif.latex?= (cos\theta+isin\theta)^{k}(cos\theta+isin\theta)" title="= (cos\theta+isin\theta)^{k}(cos\theta+isin\theta)" />
<img src="http://latex.codecogs.com/gif.latex?=(cosk\theta cos\theta - sink\theta sin\theta) + i (sink\theta cos\theta+ cosk\theta sin\theta)" title="=(cosk\theta cos\theta - sink\theta sin\theta) + i (sink\theta cos\theta+ cosk\theta sin\theta)" />
<img src="http://latex.codecogs.com/gif.latex?=cos(k\theta + \theta) + isin(k\theta + \theta)" title="=cos(k\theta + \theta) + isin(k\theta + \theta)" />
<img src="http://latex.codecogs.com/gif.latex?=cos(k + 1) \theta + isin(k + 1) \theta" title="=cos(k + 1) \theta + isin(k + 1) \theta" />

<img src="http://latex.codecogs.com/gif.latex?RHS = cos (k+1)\theta + isin(k+1)\theta" title="RHS = cos (k+1)\theta + isin(k+1)\theta" />
<img src="http://latex.codecogs.com/gif.latex?=LHS" title="=LHS" />

i.e. it is true for n = k + 1 if it is true for n = k. But since it is true for 1 (k), then it must be true for 2 (k+1) and so on and so on. Therefore, this is generally true for positive integers.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top