This means You want to find the area between the 2 curves:I got stuck at finding the point of intersection but i need help for this question
Find the area enclosed between the curve y = x3, the x-axis and the line y = -3x + 4.
THX
How did you factorise this?You have 2 areas:
Area 1:
Point of intersection, equate the two equations
x^3 = -3x+4
x^3 + 3x - 4 = 0
(x-1)(x+3) = 0
x = -3, 1
Testing both points into the line equation we see that x = 1 is the correct one
Therefore Area = integral from 0 to 1 of (x^3) dx
= [x^4 / 4](0 to 1)
= 1/4
Second Area:
A = 1/2 * b * h
Sub x = 1 into either equation to get y = 1, i.e. h = 1
Make y = 0 for the line equation and get x intercept of x = 4/3, so b = 4/3 - 1 = 1/3
A = 1/2 * 1/3 * 1
A = 1/6
Therefore total Area = 1/4 + 1/6
5/12 units squared
Tell me if I made any mistakes in the working.
lol soz meant to be (x-1)(x+4) but I don't think it changes the answer.How did you factorise this?
Its x^3, not x^2lol soz meant to be (x-1)(x+4) but I don't think it changes the answer.
Oh yeah oops I'm highIts x^3, not x^2
And yeah ahaha x=1 is still the answer