a) after u draw it, u should recognise dat tangent to a circle makes 90 degrees w\ it's radius. and from T to where it meets the circle, it's 6.
so line from T to center of the circle is sqrt(6²+2.5²)
so radius of da circle center T is sqrt(6²+2.5²)-2.5 cm
b)given eq. of normal at P(2ap, ap²): x+py=ap³+2ap---->(1)
x²=4ay
y=x²\4a
sub. y into (1):
x+p(x²\4a)=ap³+2ap
4ax+px²=4a²p³+8a²p
px²+4ax-(4a²p³+8a²p)=0
x=[-4a+-sqrt(16a²+4p(4a²p³+8a²p) )]\2p
=[-4a+-sqrt(16a²+16a²p^4+32a²p²)]\2p
=[-4a+-4sqrt(a²+a²p^4+2a²p²)]\2p
=[-2a+-2asqrt(1+p^4+2p²)]\p
=[-2a+-2asqrt((p²+1)²)]\p
=[-2a+-2a(p²+1)]\p
=-2a(1+-(p²+1))\p=-2a(2+p²)\p just taking one of dem
y=x²\4a=4a²(2+p²)²\4ap²=a(2+p²)²\p²
x=2ap
x=-2a(2+p²)\p since p is parameter
y=ap²
.: y=a[-(2+p²)²\p²]=a(2+p²)\p²
.: this normal meets the parabola again at the point w\ parameter -(2+p²)\p