Mysterious calculator exercise (1 Viewer)

tywebb

dangerman
Joined
Dec 7, 2003
Messages
2,237
Gender
Undisclosed
HSC
N/A
Try this on your calculator. Nobody knows why it works.

First we need some definitions.

Suppose dn=divisor function of n=sum of positive divisors of n

Hence

d1=1

d2=1+2=3

d3=1+3=4

d4=1+2+4=7

d5=1+5=6

d6=1+2+3+6=12

etc.

And suppose hn=n-th harmonic number=1/1+1/2+1/3+...+1/n

So

h1=1/1=1

h2=1/1+1/2=3/2 (alternatively h2=h1+1/2=3/2)

h3=1/1+1/2+1/3=11/6 (alternatively h3=h2+1/3=11/6)

h4=1/1+1/2+1/3+1/4=25/12 (alternatively h4=h3+1/4=25/12)

h5=1/1+1/2+1/3+1/4+1/5=137/60 (alternatively h5=h4+1/5=137/60)

h6=1/1+1/2+1/3+1/4+1/5+1/6=49/20 (alternatively h6=h5+1/6=49/20)

etc.

And define fn=n-th Lagarias' number=hn+ehnlnhn.

Then we have the

Proposition For all n>1, fn>dn.

And this is where the calculator comes in.

Check on the calculator for example f2>d2:

f2=3/2+e3/2ln(3/2)=3.32>d2=3.

And likewise for others:

f3=11/6+e11/6ln(11/6)=5.62>d3=4

f4=25/12+e25/12ln(25/12)=7.98>d4=7

f5=137/60+e137/60ln(137/60)=10.38>d5=6

f6=49/20+e49/20ln(49/20)=12.83>d6=12

etc.

Nobody knows why this works because the proposition is equivalent to the Riemann Hypothesis!

Lagarias proved equivalence in 2001: http://arxiv.org/PS_cache/math/pdf/0008/0008177v2.pdf
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top