View attachment 38290
also with this i tried 5C1 / 5C4 * 4! but apparently its wrong cause the answer is 125
View attachment 38291
and this idk where to start tbh
First one: carrotsss's answer is good. You can also do it using thinking about it with your standard probability rules i.e.
Pr(same house) = Pr(all in house 1) + Pr(all in house 2) + Pr(all in house 3) + Pr(all in house 4) + Pr(all in house 5) = 5 * Pr(all in a particular house) = 5 * 1/5 * 1/5 * 1/5 * 1/5 = 1/125
Second one: hscgirl's answer is brilliant but can be a bit tricky to see. If x = Pr(Katherine wins), then we know that 1 = Pr(Katherine wins) + Pr(Andrew wins) (since either one of them will win. But there's a 5/6 chance that Katherine doesn't win in the first go, so Pr(Andrew wins) = 5/6 * Pr(Katherine wins).
Another way is to break it down into the different ways Katherine can win...
Pr(Katherine wins) = Pr(Katherine wins in the first roll) + Pr(Katherine wins in her second roll) + Pr(Katherine wins in her third roll) + ...
It turns out this is an infinite series!
Pr(Katherine wins in the first roll) = 1/6
Pr(Katherine wins in her second roll) = 5/6 * 5/6 * 1/6 (since Katherine and Andrew have to both not roll a 6)
Pr(Katherine wins in her third roll) = 5/6 * 5/6 * 5/6 * 5/6 * 1/6
... and so on.
Summing it up you have a geometric series where the first term is 1/6 and r = 5/6 * 5/6 = 25/36. Hence