Approach:
Derive the location of the particle in parametric form, with time as the parameter, i.e x and y in terms of t.
solve these 2 equations for the range and maximum height of the particle, noting that at half the range, (22.5) the particle is at it's maximum altitude
=======================================
let a_y, a_x, v_y, v_x be the acceleration and velocity functions of time of the particle
a_y = -g (gravity)
a_x = 0
v_y(0) = v*sin(q) where q is the angle of projection
v_x(0) = v*cos(q) and v is the speed of projecton
y(0)=0
x(0)=0
now
/
| a_x dt = v_x
/
C = v_x
using initial values, C= v*cos(q)
v_x = v*cos(q)
/
| v_x dt = x
/
vt*cos(q) + C = x
again using initial values, C = 0
vt*cos(q) = x
/
| a_y dt = v_y
/
-gt + C = v_y
using initial values, C= v*sin(q)
v_y = v*sin(q) - gt
/
| v_y dt = y
/
vt*sin(q) - (g/2)*t^2 + C = y
using initial values, C = 0
y = vt*sin(q) - (g/2)*t^2
x = vt*cos(q)
y = vt*sin(q) - (g/2)*t^2
y = t(v*sin(q) - (g/2)t)
y = 0 when t = 0 or (2v/g)*sin(q)
therefore range = v*(2v/g)*sin(q)*cos(q) = (2v^2/g)sin(q)cos(q)
(2v^2/g)sin(q)cos(q) = 45 (*)
maximum height = max value of y
y is a quadratic in t, therefore must take it's max value when
t = -[v*sin(q)]/[2*(-g/2)]
t = (v/g)sin(q)
max height = v*(v/g)sin(q)*sin(q) -(g/2)[(v/g)sin(q)]^2
=(v^2/g)[sin(q)]^2 - [(v^2)/(2g)][sin(q)]^2
=[(v^2)/(2g)][sin(q)]^2
[(v^2)/(2g)][sin(q)]^2=11.25 (**)
now divide * by **
4cot(q)=4
cot(q)=1
q=pi/4 (45 degrees)
from *
(2v^2/g)/2= 45
v=sqrt(45g)= 3*sqrt(5g)