Originally posted by ezzy85
show that:
tan(pi/4 + A) - tan(pi/4 - A) = 2 tan 2A
use compound angles for both trig expressions on the LHS and see wot we get:
tan(pi/4 + A) = [tan(pi/4) + tan(A)] / [1 - tan(pi/4)tanA]
= (1 + tanA)/(1-tanA)
similarly tan(pi/4 - A) = (1-tanA)/(1+tanA)
subtract one from the other with common denominator:
LHS = [ (1+tanA)^2 + (1-tanA)^2 ]/(1-tan^2(A))
= 4tanA / (1-tan^2(A))
= 2(2tanA)/(1-tan^2(A))
= 2tan2A