Let t = tan(θ/2)
LHS = cosθ(tanθ - tan(θ/2))
= (1 - t²)/(1 + t²) [ (2t/1 + t²) - t]
Expand and simplify:
= 2t/(1 - t²) - t(1 - t²)/(1 + t²)
Place on common demonimator
= (2t - t + t³)/(1 + t²)
= (t + t³)/(1 + t²)
Factorise 't' in numerator
= t(1 + t²)/(1 + t²)
Eliminate/cross out (1 + t²)
= t
= tan(θ/2)
= RHS