Constip8edSkunk
Joga Bonito
are these methods correct?
lim<sub>x-->0</sub> (cosec x - cot x)
1/
= lim<sub>x-->0</sub> [(x/x) (1/sinx - 1/tanx)]
= lim<sub>x-->0</sub> [(1/x) (x / tanx - x / sinx)]
= lim<sub>x-->0</sub> (x / tanx - x / sinx) * lim<sub>x-->0</sub> (1/x)
= (1-1) * lim<sub>x-->0</sub> (1/x)
=0
2/
= lim<sub>x-->0</sub> [( sinx / x)( tanx / x)(1/sinx - 1/tanx)]
= lim<sub>x-->0</sub> [ tanx / x<sup>2</sup> - sinx / x<sup>2</sup>]
= lim<sub>x-->0</sub> [(1/x) (sinx / x - tanx / x)]
= (1-1) * lim<sub>x-->0</sub> 1/x
= 0
thx
lim<sub>x-->0</sub> (cosec x - cot x)
1/
= lim<sub>x-->0</sub> [(x/x) (1/sinx - 1/tanx)]
= lim<sub>x-->0</sub> [(1/x) (x / tanx - x / sinx)]
= lim<sub>x-->0</sub> (x / tanx - x / sinx) * lim<sub>x-->0</sub> (1/x)
= (1-1) * lim<sub>x-->0</sub> (1/x)
=0
2/
= lim<sub>x-->0</sub> [( sinx / x)( tanx / x)(1/sinx - 1/tanx)]
= lim<sub>x-->0</sub> [ tanx / x<sup>2</sup> - sinx / x<sup>2</sup>]
= lim<sub>x-->0</sub> [(1/x) (sinx / x - tanx / x)]
= (1-1) * lim<sub>x-->0</sub> 1/x
= 0
thx
Last edited: