Oh don't worry guys, here is the picture and LaTeX solution:
[maths]I_{x}=\int \int_{\Omega}^{}y^{2} \rho dA[/maths]
[maths]I_{x}=\rho \int_{0}^{2\pi } \int_{a}^{b}(r sin\theta )^{2}rdrd\theta [/maths]
[maths]I_{x}=\rho \int_{0}^{2\pi } \int_{a}^{b}(r)^{3}(sin^{2}\theta) drd\theta[/maths]
[maths]I_{x}=\rho \int_{0}^{2\pi } [\frac{r^{4}}{4}]_{a}^{b}(sin^{2}\theta) d\theta [/maths]
[maths]I_{x}=\frac{\rho}{4}(b^{4}-a^{4}) \int_{0}^{2\pi } (\frac{1}{2}-\frac{1}{2}cos2\theta ) d\theta [/maths]
[maths]I_{x}=\frac{\rho}{8}(b^{4}-a^{4}) [\theta - \frac{1}{2}sin2\theta ]_{0}^{2\pi }[/maths]
[maths]I_{x}=\frac{\rho\pi }{4}(b^{4}-a^{4})[/maths]
I realised that rather than be a
narutard and go ask the internet I realised I was better off solving the question
myself.
No shit about that.
Thank
you for your time and I really appreciate this.