Re: 2012 HSC MX2 Marathon
1.since the equation is a cubic, there must be at least 1 real root, so therefore the last root must be real since alpha and beta are complex roots
also, since the coefficients of the polynomial are all real, the 2 complex roots alpha and beta must be conjugates of one another because the other root is real, and the conjugate of a real number is the same, leaving alpha and beta to form a conjugate pair
using the product of roots, and letting the last root be gamma, alpha*beta*gamma = -1
gamma = -1/alpha*beta
when a complex number and its conjugate is multiplied together, the result is the modulus squared
.'. gamma = -1/|beta|^2
2. subbing gamma into the equation x^3 + 5x + 1,
-1/(|beta|^2)^3 - 5/|beta|^2 + 1 = 0 since -1/|beta|^2 is a root of this equation
mutiplying everything by |beta|^6,
-1 - 5|beta|^4 + |beta|^6 = 0
(|beta|^2)^3 - 5(|beta|^2)^2 - 1 = 0
looking at this equation, we can therefore see that |beta|^2 is a root of the equation x^3 - 5x^2 - 1 = 0, and from before it was established that alpha*beta = |beta|^2
.'. alpha*beta is a root of the equation x^3 -5x^2 - 1 =0
1.since the equation is a cubic, there must be at least 1 real root, so therefore the last root must be real since alpha and beta are complex roots
also, since the coefficients of the polynomial are all real, the 2 complex roots alpha and beta must be conjugates of one another because the other root is real, and the conjugate of a real number is the same, leaving alpha and beta to form a conjugate pair
using the product of roots, and letting the last root be gamma, alpha*beta*gamma = -1
gamma = -1/alpha*beta
when a complex number and its conjugate is multiplied together, the result is the modulus squared
.'. gamma = -1/|beta|^2
2. subbing gamma into the equation x^3 + 5x + 1,
-1/(|beta|^2)^3 - 5/|beta|^2 + 1 = 0 since -1/|beta|^2 is a root of this equation
mutiplying everything by |beta|^6,
-1 - 5|beta|^4 + |beta|^6 = 0
(|beta|^2)^3 - 5(|beta|^2)^2 - 1 = 0
looking at this equation, we can therefore see that |beta|^2 is a root of the equation x^3 - 5x^2 - 1 = 0, and from before it was established that alpha*beta = |beta|^2
.'. alpha*beta is a root of the equation x^3 -5x^2 - 1 =0