HeroicPandas
Heroic!
- Joined
- Mar 8, 2012
- Messages
- 1,546
- Gender
- Male
- HSC
- 2013
Alright, fresh start... sorry
Beginning from the use of induction hypothesis
![](https://latex.codecogs.com/png.latex?\bg_white \geq \frac{2}{3}k\sqrt{k} + \sqrt{k+1})
![](https://latex.codecogs.com/png.latex?\bg_white = \frac{2}{3}\sqrt{k+1} \left ( \frac{k\sqrt{k}}{\sqrt{k+1}} +\frac{3}{2}\right ))
Now we need to prove that (time for a discovery)
![](https://latex.codecogs.com/png.latex?\bg_white \frac{k\sqrt{k}}{\sqrt{k+1}} +\frac{3}{2}\geq k+1)
Subtract 1.5 on both sides
![](https://latex.codecogs.com/png.latex?\bg_white \frac{k\sqrt{k}}{\sqrt{k+1}} \geq k-\frac{1}{2})
Multiply both sides by 2sqrt(k+1)
![](https://latex.codecogs.com/png.latex?\bg_white 2k\sqrt{k}\geq 2k\sqrt{k+1} - \sqrt{k+1})
![](https://latex.codecogs.com/png.latex?\bg_white 2k(\sqrt{k}-\sqrt{k+1}) + \sqrt{k+1} \geq 0)
Edits:
Actually.. as k>0 and sqrt(k+1)>0, then sqrt(k) - sqrt(k+1)> 0 for LHS >0, so k>k+1, 0>1..................
When does equality occur?
Beginning from the use of induction hypothesis
Now we need to prove that (time for a discovery)
Subtract 1.5 on both sides
Multiply both sides by 2sqrt(k+1)
Edits:
Actually.. as k>0 and sqrt(k+1)>0, then sqrt(k) - sqrt(k+1)> 0 for LHS >0, so k>k+1, 0>1..................
When does equality occur?
Last edited: