Suppose 10^k ak + 10^k-1ak-1 +... + a0 = 3m, mEZ
10^k ak + 10^k-1ak + ... + a0 - (ak + ak-1 + ... + a0) = 3m - (ak + ak-1+....+a0)
9(................) using the x^n-y^n factorisation = 3m - (ak+ak-1+...+a0)
Since LHS is divisible by 3, RHS is, so ak+ak-1+...+a0 is divisible by 3.
Alternatively, suppose
ak + ak-1 + ... + a0 = 3p, mEZ
-(ak + ak-1 + ... + a0) = -3p
(10^k ak + 10^k-1ak + ... + a0) - (ak + ak-1 + ... + a0) = (10^k ak + 10^k-1ak + ... + a0) -3p
Same reasoning as above follows.