$If $z_{1}\;,z_{2}\;,z_{3}\;,z_{4}$ are $4$ non zero complex number such
$that $\Im(z_{1}+z_{2}) = \Im(z_{3}+z_{4}) =0\;,$ Then possible value of$
\arg(\frac{z_{1}}{z_{2}})+\arg(\frac{z_{3}}{z_{4}}) =
\bf{Options::}
(a)\;\; 0\;\;\;\;\;\; (b)\;\; \frac{\pi}{2}\;\;\;\;\;\; (c)\;\...