• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

2u Mathematics Marathon v1.0 (1 Viewer)

P

pLuvia

Guest
You sure you didn't mean e2x?
If so
e4x-4e2x+4=0
(e2x-2)(e2x-2)=0
e2x=2
x=(ln2)/2
 

angmor

momentica-one.deviantart.
Joined
Dec 2, 2005
Messages
560
Gender
Male
HSC
2006
state the domain and range of the function y= 2( sqrt.[25-x<sup>2</sup>] )

(the sqrt. covers the whole 25-x<sup>2</sup> in case you dont get me). thanks. i would really like to know how you go about working this out, as my book only shows me the solution.
 

Riviet

.
Joined
Oct 11, 2005
Messages
5,584
Gender
Undisclosed
HSC
N/A
Whenever you have a function that involves a sqrt{F(x)}, the domain can usually be found by considering values of F(x) for which sqrt{F(x)} is defined, ie sqrt{F(x)} is only defined for F(x) > 0 since you can't take the square root of negative numbers in the real number system.

So 25-x2> 0
x2 - 25 > 0

Using a graph or by inspection,

Domain: x > 5 or x < -5

Let g(x) = sqrt(25-x2) which is the upper half of the circle (semicircle) with radius 5 units.

.'. range of g(x) is 0 < g(x) < 5


.'. 0 < 2.g(x) < 10

0 < 2.sqrt(25-x2) < 10


Range: 0 < y < 10
 
Last edited:
P

pLuvia

Guest
2x-3y-1=0
y=2x/3-1/3
y'=2/3
MP=[(1-1)/2,(3+9)/2]
=(0,6)
Hence
y-6=2x/3
2x-3y+18=0

New Question
Find values for x for 1+sqrt{3}tanx+3tan2x+3sqrt{3}tan3x+... to have a limiting sum, and hence find this the limiting sum
 
Last edited by a moderator:

mica

Member
Joined
Jan 19, 2005
Messages
32
Gender
Male
HSC
2006
wasnt the question

Show that 1+2cosx+4cos^2x+... has a limiting sum and then find it

or am i crazy.
anyway can someone tell me how to go about proving limiting sums. Like what is involved ?

thanks
Michael
 

SoulSearcher

Active Member
Joined
Oct 13, 2005
Messages
6,751
Location
Entangled in the fabric of space-time ...
Gender
Male
HSC
2007
Yes, but that series did not have a limiting sum, as the range of 2cosx could be larger than 1 at certain times, therefore not having a limiting sum. To prove that a geometric series has a limiting sum, you have to show that the ratio lies between -1 and 1, i.e. |r| < 1
 

mica

Member
Joined
Jan 19, 2005
Messages
32
Gender
Male
HSC
2006
oh ok thanks SoulSearcher

So with 1+sqrt{3}tanx+3tan<sup>2</sup>x+3sqrt{3}tan<sup>3</sup>x+...

with a = 1

and r = t2 / t1
= sqrt{3}tanx

= t3 / t2
= 3tan^2x / sqrt{3}tanx
= 3tanx / sqrt{3}
= 3tanx / sqrt{3} * sqrt{3} / sqrt{3}
= sqrt{3}tanx

therefore to find values of x we place r = sqrt{3}tanx within -1 and 1 as such

-1 < sqrt{3}tanx < 1

= -1 / sqrt{3} < tanx < 1 / sqrt{3}

and 1 / sqrt{3} = pie / 6 using the trig triangles

therefore x = pie + pie / 6 to get -1 / sqrt{3}
and x = pie / 6 to get 1 / sqrt{3}

therefore x is any value between 30 to 210 degrees not including.
30 < x < 210

i wasnt quite sure so someone tell me what i have done wrong :)
 

Forbidden.

Banned
Joined
Feb 28, 2006
Messages
4,426
Location
Deep trenches of burning HELL
Gender
Male
HSC
2007
pLuvia said:
2x-3y-1=0
y=2x/3-1/3
y'=2/3
MP=[(1-1)/2,(3+9)/2]
=(0,6)
Hence
y-6=2x/3
2x-3y+18=0
......
So, it seems just about all Year 12 students doing Mathematics and/or its Extension courses drink Calculus when solving graphical equations .... I should have stated not to use calculus..

The answer I expected would look like this ...

2x-3y-1=0
3y=2x-1
y=2/3x-1/3
m1=2/3x

Midpoint=[(1+(-1))/2,(3+9)/2]
=(0,6)

y-y1=m(x-x1)
y-6=2/3(x-0)
y-6=2/3x

3y-18=2x

2x-3y+18=0
 

mica

Member
Joined
Jan 19, 2005
Messages
32
Gender
Male
HSC
2006
mica said:
oh ok thanks SoulSearcher

So with 1+sqrt{3}tanx+3tan<sup>2</sup>x+3sqrt{3}tan<sup>3</sup>x+...

with a = 1

and r = t2 / t1
= sqrt{3}tanx

= t3 / t2
= 3tan^2x / sqrt{3}tanx
= 3tanx / sqrt{3}
= 3tanx / sqrt{3} * sqrt{3} / sqrt{3}
= sqrt{3}tanx

therefore to find values of x we place r = sqrt{3}tanx within -1 and 1 as such

-1 < sqrt{3}tanx < 1

= -1 / sqrt{3} < tanx < 1 / sqrt{3}

and 1 / sqrt{3} = pie / 6 using the trig triangles

therefore x = pie + pie / 6 to get -1 / sqrt{3}
and x = pie / 6 to get 1 / sqrt{3}

therefore x is any value between 30 to 210 degrees not including.
30 < x < 210

i wasnt quite sure so someone tell me what i have done wrong :)

Was this correct ?
 

B35tY

Member
Joined
Feb 1, 2005
Messages
262
Location
Sydney
Gender
Male
HSC
2006
i think that's round the wrong way, i went from the line

-1 < sqrt(3)tanx < 1

= -1 / sqrt(3) < tanx < 1 / sqrt(3)

= tan ^ -1 (-1 / sqrt(3)) < x < tan ^ -1 (1 / sqrt(3))

= -30 < x < 30

but i might be wrong too...

EDIT: Just adding the = signs
 
P

pLuvia

Guest
f3nr15 said:
So, it seems just about all Year 12 students doing Mathematics and/or its Extension courses drink Calculus when solving graphical equations .... I should have stated not to use calculus..
I didn't use calculus at all:confused:
 

mica

Member
Joined
Jan 19, 2005
Messages
32
Gender
Male
HSC
2006
still no clarification of the correct answer of values of x to satisfy

So with 1+sqrt{3}tanx+3tan<sup>2</sup>x+3sqrt{3}tan<sup>3</sup>x+...
 

Riviet

.
Joined
Oct 11, 2005
Messages
5,584
Gender
Undisclosed
HSC
N/A
-pi/6 < x < pi/6 is only one of the many solutions, because if you do a quick sketch of y=tanx, the curve repeats itself every pi radians. If you refer to the graph, you should observe that two other possibe solutions are -7pi/6 < x < -2pi/3 and 2pi/3 < x < 7pi/6.

So Sinfinity = a/(1-r)
=1/(1-sqrt.3tanx)
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top