Here is a 4u induction question:
With the Fibonacci Numbers defined in the usual way (ie. F<sub>1</sub> = 1, F<sub>2</sub> = 1 and F<sub>n</sub> = F<sub>n-1</sub> + F<sub>n-2</sub> for n ≥ 3),
(a) Prove by induction that F<sub>n</sub> = (1 / √5) * {[(1 + √5) / 2]<sup>n</sup> - [(1 - √5) / 2]<sup>n</sup>} for integers n ≥ 1
(b) Hence, or otherwise, show that as n --> ∞, F<sub>n+1</sub> / F<sub>n</sub> ---> φ, where φ = (1 + √5) / 2
Xayma - you should be able to explain your approximation method using part (a) as well.
Now, here is a question with a more formal proof that F<sub>n+1</sub> / F<sub>n</sub> ---> φ:
Let φ = (1 + √5) / 2, and define the Fibonacci numbers as above, and define R<sub>n</sub> as F<sub>n+1</sub> / F<sub>n</sub>
(a) Show that if φ < R<sub>n</sub> < φ + ε, where ε ≤ 1 / 2, then φ - ε / 2 < R<sub>n+1</sub> < φ
(b) Show that if φ - ε < R<sub>n</sub> < φ, where ε ≤ 1 / 2, then φ < R<sub>n+1</sub> < φ + ε / 2
(c) Hence, show that |R<sub>n</sub> - φ| < 1 / 2<sup>n</sup>
(d) Explain why F<sub>n+1</sub> / F<sub>n</sub> ---> φ as n --> ∞