Re: Year 11 Mathematics 3 Unit Cambridge Question & Answer Thread
Question 18 a and c from 6A:
Simplify:
a)
the denominator is meant to be 2^n+1 +2, can't get it to work for some reason.
answer is :
c)
answer is: -2^n3^n
To write
![](https://latex.codecogs.com/png.latex?\bg_white 2^{n+1})
, the LaTeX code needs to be written like this: 2^{n+1} (put curly braces around the thing you want in the exponent).
Part a)
Based on what you say the answer is, I think you made a typo in the numerator, it should be
![](https://latex.codecogs.com/png.latex?\bg_white 6^n + 3^n)
instead (OR, the denominator should be
![](https://latex.codecogs.com/png.latex?\bg_white 2^{n+1} - 2)
. I'll assume the numerator is
![](https://latex.codecogs.com/png.latex?\bg_white 6^n + 3^n)
.
Then the numerator can be written as:
![](https://latex.codecogs.com/png.latex?\bg_white (2\times 3)^n + 3^n)
(as
![](https://latex.codecogs.com/png.latex?\bg_white 6=2\times 3)
)
![](https://latex.codecogs.com/png.latex?\bg_white =2^n \times 3^n + 3^n)
(using the index law
![](https://latex.codecogs.com/png.latex?\bg_white (ab)^n = a^n \times b^n)
)
![](https://latex.codecogs.com/png.latex?\bg_white =3^n (2^n +1))
(factorising).
The denominator
![](https://latex.codecogs.com/png.latex?\bg_white 2^{n+1}+2)
can be written as:
![](https://latex.codecogs.com/png.latex?\bg_white 2\times 2^{n}+2)
(as
![](https://latex.codecogs.com/png.latex?\bg_white 2^{n+1}=2^1 \times 2^n = 2\times 2^n)
, using the index law
![](https://latex.codecogs.com/png.latex?\bg_white a^{m+n}=a^m \times a^n)
)
![](https://latex.codecogs.com/png.latex?\bg_white =2(2^n + 1))
(factorising).
So the original fraction is
![](https://latex.codecogs.com/png.latex?\bg_white \frac{6^n + 3^n}{2^{n+1}+2}=\frac{3^n (2^n +1)}{2(2^n + 1)}=\frac{3^n}{2})
(cancelling
![](https://latex.codecogs.com/png.latex?\bg_white 2^n +1)
).
Part c)
The idea is to rewrite the numerator in terms of
![](https://latex.codecogs.com/png.latex?\bg_white 2^n)
and
![](https://latex.codecogs.com/png.latex?\bg_white 3^n)
using index laws, and then hopefully we will be able to cancel something with the denominator (notice that 12 and 18 can both be written in terms of powers of 2 and 3).
The numerator
![](https://latex.codecogs.com/png.latex?\bg_white 12^n - 18^n)
can be written as:
![](https://latex.codecogs.com/png.latex?\bg_white \left(2^2 \times 3\right)^n - \left(2\times 3^2\right)^n)
(as
![](https://latex.codecogs.com/png.latex?\bg_white 12=2^2 \times 3)
and
![](https://latex.codecogs.com/png.latex?\bg_white 18 = 2\times 3^2)
)
![](https://latex.codecogs.com/png.latex?\bg_white = \left(2^2 \right)^n \times 3^n - 2^n \times \left(3^2 \right)^n )
(using the index law
![](https://latex.codecogs.com/png.latex?\bg_white (ab)^n = a^n \times b^n)
)
![](https://latex.codecogs.com/png.latex?\bg_white =2^{2n} \times 3^n - 2^n \times 3^{2n})
(using the index law
![](https://latex.codecogs.com/png.latex?\bg_white \left(a^b \right)^n = a^{bn})
)
![](https://latex.codecogs.com/png.latex?\bg_white = 2^n 3^n (2^n - 3^n))
(factorising by taking out a common factor of
![](https://latex.codecogs.com/png.latex?\bg_white 2^n 3^n)
)
![](https://latex.codecogs.com/png.latex?\bg_white =-2^n 3^n (3^n - 2^n))
(as
![](https://latex.codecogs.com/png.latex?\bg_white 2^n - 3^n = -(3^n - 2^n))
).
So the original fraction becomes
![](https://latex.codecogs.com/png.latex?\bg_white \frac{-2^n 3^n (3^n - 2^n)}{3^n - 2^n}=-2^n 3^n\text{ }(=-6^n))
.