i)
z + 1/z = (z^2+1)/z
= (x^2 + 2ixy + y^2 + 1)/(x+iy)
= (x^2 + 2ixy + y^2 + 1)(x-iy)/(x^2+y^2)
= [(x^3+xy^2+x) + (yx^2+y^3-y)i]/(x^2+y^2)
if k is real, than fake = 0
(yx^2+y^3-y)/(x^2+y^2) = 0
(yx^2+y^3-y) = 0
y(x^2+y^2-1) = 0
Therefore y=0 or x^2+y^2 = 1
ii)
(x^3+xy^2+x)/(x^2+y^2) = k
If y = 0, then:
(x^3 + x)/x^2 = k
x^2+1 = kx
x^2 - kx + 1 = 0
b/c k is real, delta > 0
K^2 >/ 4
|K| >/ 2
If x^2+y^2 = 1 then:
x(x^2+y^2+1) = k
2x = k
By inspection, k/<2 because from (x^2+y^2 = 1), x has to be less than 1