onebytwo said:
please help to differentiate the following
(iv) y = x^(logx)
(v) y = x^(1/x)
thanks in advance
heres my 2 cents...
for (iv) y = x^(lnx) [assuming that logx = lnx]
we log both sides... lny = ln[x^(lnx)]
ln y = lnx * lnx = (lnx)^2
now, implicit diff...
(d ln y/dy) * (dy/dx) = 2(lnx)^ 1 * [1/x]
(1/y) * (dy/dx) = 2(lnx)/x
so dy/dx = 2ylnx / x = 2[lnx][x^(lnx)] / x
for (v) => y = x^(1/x)
x^(1/x) = e^([1/x][lnx])
so, we have y = e^([1/x][lnx])
therefore, dy/dx = [d e^([1/x][lnx])/d([1/x][lnx])] * d([1/x][lnx])/dx = e^([1/x][lnx]) * [-x^(-2)lnx + 1/x(1/x)]
dy/dx = x^(1/x) * [(1/x^2)(1-lnx)]
hopefully that they are right...M.D. ^^