Expon and log functions question. (1 Viewer)

RHINO7

Member
Joined
Oct 18, 2006
Messages
149
Location
...
Gender
Male
HSC
2007
Please help needed-

i) Find the equation of the normal to the curve y=e^x at the point where x=3, in exact form.




ii)Find the stationary point on the curve y=xe^x and determine its nature.




iii) Find the second derivative of (e^2x +1)^7




iv) Find the equation of the tangent to the curve y=e^2x -3x at the point (0,1)



Thank you
 

jb_nc

Google "9-11" and "truth"
Joined
Dec 20, 2004
Messages
5,393
Gender
Male
HSC
N/A
lol, no joke man you should probably drop down to general
 

RHINO7

Member
Joined
Oct 18, 2006
Messages
149
Location
...
Gender
Male
HSC
2007
hey no joke MAN, i've done the questions i wanted to see if i got the working out correct. Dick.
 
Last edited:

S1M0

LOLtheist
Joined
Aug 17, 2006
Messages
1,598
Gender
Male
HSC
2008
This may be year 12 stuff, but i'll just guess.

1) y = e^3??
 

jb_nc

Google "9-11" and "truth"
Joined
Dec 20, 2004
Messages
5,393
Gender
Male
HSC
N/A
S1M0 said:
This may be year 12 stuff, but i'll just guess.

1) y = e^3??
It says the equation and normal to the curve. So,

y = e^x
dy/dx = e^x

at x = 3, dy/dx = e^3 but we know that iff m1*m2 = -1 then it is the normal gradient is -(1/e^3).

The point (y1) is e^3.

y - y1 = m(x-x1)
y - e^3 = (-1/e^3)[x - 3]
-e^3(y - e^3) = x - 3
-e^3y - e^6 + 3 = x

(ii) d(xe^x)/dx = e^x + xe^x
Then, e^x(x + 1)
Set dy/dx to 0
e^x(x + 1) = 0
e^x cannot = 0, x = -1 so there is one stationary point.

d^2(xe^x)/dx^2 = e^x + e^x + xe^x = 2e^x + xe^x
Sub in -1 d^2x/dx^2 > 0 so -1 is a MINIMUM point

Point is [-1, -(1/e)]. Domain is R, Range is [-1/e, infinity)

(iii) y=e^2x -3x
dy/dx = 2e^2x - 3
at x = 0, dy/dx = -1
y - y1 = x(x - x1)
y -1 = -(x - 0)
x = -y + 1

There :eek:
 

darkliight

I ponder, weak and weary
Joined
Feb 13, 2006
Messages
341
Location
Central Coast, NSW
Gender
Male
HSC
N/A
RHINO7 said:
Please help needed-

iv) Find the equation of the tangent to the curve y=e^2x -3x at the point (0,1)

Thank you
We've got this curve out in our 2D plane right? We don't care what it looks like, but it makes sense that at any point along that curve we could draw a line that just touches the curve at that point, right? Something like

Now, the equation of a line is given by y - y_1 = m(x - x_1) right? So for our tangent line, all we need to know is a point (x_1, y_1) our line passes through and its slope (or rate of change), m, so we can plug it into that equation. We're already given the point, we just need to know its slope. For a tangent line, the rate of change we want is the same as the rate of change of our curve at that point. We know the rate of change of y = e^2x -3x is given by dy/dx = 2e^2x -3 right? In particular, we want to know the rate of change at the point (0,1), so plugging that into our derivative we get m = 2e^(2*0) - 3 = 2 - 3 = -1.

We know everything now, so plugging it into the equation of a line we wrote down before, we have y - 1 = -1(x - 0) ==> y = 1 - x.

I was extra bored so here is what it looks like:


Also, whats with the hostility in this thread?
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top