Expand both sides
a2c2 - a2d2 - b2c2 + b2d2 ≤ a2c2 - 2abcd + b2d2
- a2d2 - b2c2 ≤ -2abcd
a2d2 + b2c2 ≥ 2abcd
.'. to prove (a2 - b2)(c2 - d2) ≤ (ac-bd)2, is to prove that:
a2d2 + b2c2 ≥ 2abcd
(ad - bc)2 ≥ 0
a2d2 + b2c2 - 2abcd ≥ 0
.'. a2d2 + b2c2 ≥ 2abcd
.'. (a2 - b2)(c2 - d2) ≤ (ac-bd)2