[maths](x+y)^2=1\\x^2+y^2=1-2xy\geq 1-2(\frac{1}{4})=\frac{1}{2}\\Also,\frac{1}{xy}\geq \frac{1}{4}\Rightarrow \frac{1}{x^2y^2}\geq \frac{1}{16}\\(x+\frac{1}{x})^2+(y+\frac{1}{y})^2\\=x^2+y^2+\frac{x^2+y^2}{x^2y^2}+4\\\geq \frac{1}{2}+\frac{\frac{1}{2}}{\frac{1}{16}}+4\\=\frac{25}{2}[/maths]