• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Inverse functions (1 Viewer)

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,520
Gender
Male
HSC
2006
Let y = x^3 - 3x^2 - 1 (for x >=2). Find the slope of the tangent to the inverse function at x = -1.
Let f(x) = x³ - 3x² - 1
Let the inverse for x ≥ 2 be y = f-1(x), we seek dy/dx at x = - 1
If y = f-1(x), then
x = f(y)
dx/dy = f'(y)
dy/dx = 1 / f'(y)

At x = - 1, y = f-1(-1) = a (which we need to find)
So the point of contact of the tangent on the inverse function is (-1, a) but the reflective point on the original function is (a, -1) which implies f(a) = - 1
=> a³ - 3a² - 1 = - 1
a²(a - 3) = 0
a = 0, 3
But since the function is defined for x ≥ 2 we choose a = 3 hence the point on the inverse function is (-1, 3) so
dy/dx = 1 / f'(3) at x = -1

Since f(x) = x³ - 3x² - 1
f'(x) = 3x² - 6x
f'(3) = 9
=> dy/dx = 1/9
 
Joined
Oct 23, 2005
Messages
116
Location
Fairfield West
Gender
Male
HSC
N/A
is there a simpler way of doing this?

I simply differentiated the the original equation, found the reciprocal (i.e. dx/dy) and then subbed in x = -1 and i got the same answer (1/9).

Or is that method incorrect?
 

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,520
Gender
Male
HSC
2006
is there a simpler way of doing this?

I simply differentiated the the original equation, found the reciprocal (i.e. dx/dy) and then subbed in x = -1 and i got the same answer (1/9).

Or is that method incorrect?
I'm not sure about the logic behind that...I think the way you got the same answer might be a coincidence...

If y = f(x), then
x = f-1(y)
dy/dx = f'(x)
dx/dy = 1 / f'(x)
=> d[f-1(y)]/dy = 1 / f'(x)
x = -1 refers to the input value of the inverse. In the way it was defined, the input value of the inverse function is y from your approach, using x = f-1(y) so really you're subbing in y = -1 and solving it the same way (just x and y are the other way around)
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top