MX2 Integration Marathon (7 Viewers)

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
Re: HSC 2018 MX2 Integration Marathon

This is a skeleton solution.
By substituting u=(x-2)/sqrt(2) and considering f(x)+f(-x), the integral can be re-written as


A tangent substitution will turn it into a format that Wolfram can solve...finally:eek:

https://www.wolframalpha.com/input/?i=integrate+sqrt(1+tan^4+x)+/+(1-tan^2+x)

I know Wolfram used hyperbolic tangent substitution but it is also solvable in MX2 by secant substitution.:tongue:

Alternatively, if you don't mind handling improper integral, you can do some algebraic manipulation to get:

Substituting v=u-1+u and w=u-1-u will lead to two improper (but solvable) integrals because u-1 blows up at 0.
Not sure if anyone attempted to go further from this.

If you are careful with the manipulation, you should have got the final answer.









 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
Re: HSC 2018 MX2 Integration Marathon

I saw another approach on the internet...however the back substitution may be slightly messier.
 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
Re: HSC 2018 MX2 Integration Marathon

This is slightly tedious.
 
Last edited:

Paradoxica

-insert title here-
Joined
Jun 19, 2014
Messages
2,556
Location
Outside reality
Gender
Male
HSC
2016
Re: HSC 2018 MX2 Integration Marathon

I saw another approach on the internet...however the back substitution may be slightly messier.
This only works for x>0 because the resultant primitive does not have a derivative at 0, yet the function to be integrated is clearly defined at 0.
 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
#83 and #88 are still outstanding and this is a new one.
Feel free to share your attempt.
 

fan96

617 pages
Joined
May 25, 2017
Messages
543
Location
NSW
Gender
Male
HSC
2018
Uni Grad
2024


First we note that for .

Using

,

, and















 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
A new one


The answer looks quite ugly and probably can't be simplified further. Taking common denominator and expanding out will make it really messy.
 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
A new one


The answer looks quite ugly and probably can't be simplified further. Taking common denominator and expanding out will make it really messy.
As usual, reverse quotient rule problems are easy to set but difficult to solve. It becomes a piece of cake IF (a big if) you can spot it.:)
 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
Using the above substitution, it should be obvious that


The definite integral can be evaluated easily.
 
Last edited:

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
A few new integrals

If you can solve one of them, then you can probably solve all of them.



 

stupid_girl

Active Member
Joined
Dec 6, 2009
Messages
221
Gender
Undisclosed
HSC
N/A
Why is it getting so quiet?:cry:

Let's have a new integral. Show that
 
Last edited:

HeroWise

Active Member
Joined
Dec 8, 2017
Messages
353
Gender
Male
HSC
2020
After multiplying cosx and rearranging the quadratic im stuck a little hint please!

Edit:
DAMMIT im not getting the sqrt pi


GOT IT!
 
Last edited:

HeroWise

Active Member
Joined
Dec 8, 2017
Messages
353
Gender
Male
HSC
2020
Use Kings property for another integral, add them, and reduce to a smaller fraction.
After that use weierstrauss and after simplifying use partial fractions. Then integrate normally. Sub in the values and u got it Nice question
 

Users Who Are Viewing This Thread (Users: 0, Guests: 7)

Top