• Got a question on how to use our new website? Check out our user guide here!

Physics Question (1 Viewer)

theKingPin

Member
Joined
Jul 29, 2014
Messages
67
Gender
Male
HSC
2017
Hi All,
I was practicing some physics questions from Australian Physics Olympiads Online and came across a question that I had not seen before. The answer is given however I do not completely understand it. Could someone explain it.
Thanks

Question:

Lucy is measuring the acceleration due to gravity in Melbourne by dropping a ball through a vertical distance 1.00 m and timing how long it takes.

The ball starts at rest, and Lucy times its fall four times. The results are: 0.47 s, 0.42 s, 0.48 s and 0.41 s. The uncertainty in her distance measurement is 1 cm and the uncertainty in the timer is 0.01 s. What is the uncertainty in the value of g that Lucy calculates?


Select one:
a. at least 0.01 ms−2 and at most 0.03ms−2.
b. more than 0.03 ms−2but at most ms−2.
c. more than 0.1 ms−2 but at most 0.4 ms−2.
d. more than 0.4 ms−2 but at most 0.6 ms−2.
e. more than 0.6ms−2 but at most 2ms−2.

Correct Answer: E

A value of t = 0.45 ± 0.04 s just covers the range of measured values.

Alternative 1: Use this value and the range in possible distance measurements to calculate the largest and smallest possible values of the acceleration due to gravity.

Alternative 2 (using fractional errors): t has approximately 9% fractional error. The fractional error in the distance is 1%, so the fractional error in g is (2 × 9 + 1)% = 19% which gives an absolute uncertainty of around 2 ms−2.

http://csma31.csm.jmu.edu/physics/Courses/P140L/appendices/Combining Uncertainties in Experimental Results.htm
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,090
Gender
Male
HSC
N/A
Hi All,
I was practicing some physics questions from Australian Physics Olympiads Online and came across a question that I had not seen before. The answer is given however I do not completely understand it. Could someone explain it.
Thanks

Question:

Lucy is measuring the acceleration due to gravity in Melbourne by dropping a ball through a vertical distance 1.00 m and timing how long it takes.

The ball starts at rest, and Lucy times its fall four times. The results are: 0.47 s, 0.42 s, 0.48 s and 0.41 s. The uncertainty in her distance measurement is 1 cm and the uncertainty in the timer is 0.01 s. What is the uncertainty in the value of g that Lucy calculates?


Select one:
a. at least 0.01 ms−2 and at most 0.03ms−2.
b. more than 0.03 ms−2but at most ms−2.
c. more than 0.1 ms−2 but at most 0.4 ms−2.
d. more than 0.4 ms−2 but at most 0.6 ms−2.
e. more than 0.6ms−2 but at most 2ms−2.

Correct Answer: E

A value of t = 0.45 ± 0.04 s just covers the range of measured values.

Alternative 1: Use this value and the range in possible distance measurements to calculate the largest and smallest possible values of the acceleration due to gravity.

Alternative 2 (using fractional errors): t has approximately 9% fractional error. The fractional error in the distance is 1%, so the fractional error in g is (2 × 9 + 1)% = 19% which gives an absolute uncertainty of around 2 ms−2.

http://csma31.csm.jmu.edu/physics/Courses/P140L/appendices/Combining Uncertainties in Experimental Results.htm
Well the answer is definitely greater than 0.6 m s-2, so I guess that mades E the answer.







(see the propagation of uncertainty article on wiki: https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Simplification (you should familiarise yourself with propagation of error concepts)).





http://support.casio.com/storage/en/manual/pdf/EN/004/fx-82AU_PLUS_II_EN.pdf





 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top