Lets assume that there is a point satisfying θ(1) < pi/4, θ(2) < pi/4. Therefore tan[θ(1)] < 1, tan[θ(2)] < 1. Therefore tanθ(1)tanθ(2) < 1 (i.e. product of roots < 1). Hence, (x^2+4hy)/(x^2) < 1 -> x^2+4hy < x^2 (x^2 > 0) -> 4hy < 0 -> y < 0. Contradiction!