• Want to level up your HSC prep on those harder Maths questions?
    Register now for the BoS Trials (7th October)!

Strange inequality (1 Viewer)

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
2 ways I can see, here's the start. Try what you can.

- Harmonic Mean.

- Cross multiply so you have the cyclic sum on top and the product on the bottom.
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,435
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=given, x@plus;y@plus;z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}@plus;\frac{1}{b}@plus;\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x@plus;y@plus;z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." target="_blank"><img src="http://latex.codecogs.com/gif.latex?given, x+y+z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x+y+z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." title="given, x+y+z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x+y+z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." /></a>
oh yeh, and this was for all a,b,c>0 of course
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top