Ekman
Well-Known Member
- Joined
- Oct 23, 2014
- Messages
- 1,612
- Gender
- Male
- HSC
- 2015
Re: MX2 2015 Integration Marathon
Rationalized the denominator.
![](https://latex.codecogs.com/png.latex?\bg_white $ Split the integrand to get: $ \int \frac{\sqrt{x}}{x-1}dx + \int \frac{1}{x-1} dx )
(Through x=u^2 substitution)
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \int \frac{2u^2}{u^2-1}du = 2u + ln(|\frac{u-1}{u+1}|) = 2\sqrt{x} + ln(|\frac{\sqrt{x}-1}{\sqrt{x}+1}|) )
![](https://latex.codecogs.com/png.latex?\bg_white \int \frac{1}{x-1} = ln(|x-1|) )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \int{\frac{1}{\sqrt{x}-1}}dx = 2\sqrt{x} + ln(|\frac{\sqrt{x}-1}{\sqrt{x}+1}|) + ln(|x-1|) +c )
Edit: I just realized now:
![](https://latex.codecogs.com/png.latex?\bg_white =2\sqrt{x} + 2ln(|\sqrt{x}-1|) + c )
Edit: I just realized now:
Last edited: