Pretty sure this is an old Tournament of Towns problem but wasn't too difficult (maybe IMOSL G1?)... It is a bit of a pain to convert to directed angles so left as an exercise to the reader.
We construct midpoints
![](https://latex.codecogs.com/png.latex?\bg_white N)
,
![](https://latex.codecogs.com/png.latex?\bg_white P)
,
![](https://latex.codecogs.com/png.latex?\bg_white Q)
of
![](https://latex.codecogs.com/png.latex?\bg_white BC)
,
![](https://latex.codecogs.com/png.latex?\bg_white AC)
,
![](https://latex.codecogs.com/png.latex?\bg_white BD)
respectively. Also, let
![](https://latex.codecogs.com/png.latex?\bg_white AB \cap CD = R)
,
![](https://latex.codecogs.com/png.latex?\bg_white AB \cap NQ = R')
and
![](https://latex.codecogs.com/png.latex?\bg_white AC \cap BD = S)
. By Midpoint Theorem, we have
![](https://latex.codecogs.com/png.latex?\bg_white MP \parallel CD \parallel NQ)
and
![](https://latex.codecogs.com/png.latex?\bg_white PN \parallel AB \parallel MQ)
so
![](https://latex.codecogs.com/png.latex?\bg_white MPNQ)
is a parallelogram with
![](https://latex.codecogs.com/png.latex?\bg_white MP = NQ = \frac{1}{2} CD)
and
![](https://latex.codecogs.com/png.latex?\bg_white PN = MQ = \frac{1}{2} AB)
. Since
![](https://latex.codecogs.com/png.latex?\bg_white AB = CD)
, we have
![](https://latex.codecogs.com/png.latex?\bg_white MPNQ)
is a rhombus.
Furthermore, since
![](https://latex.codecogs.com/png.latex?\bg_white \angle BMC = 90^{\circ})
,
![](https://latex.codecogs.com/png.latex?\bg_white N)
is the centre of the circle passing through
![](https://latex.codecogs.com/png.latex?\bg_white BMC)
by semicircle theorem. Thus,
![](https://latex.codecogs.com/png.latex?\bg_white NM = \frac{1}{2} BC = NB = NQ)
as
![](https://latex.codecogs.com/png.latex?\bg_white AB = BC = CD)
. Therefore,
![](https://latex.codecogs.com/png.latex?\bg_white QM = MN = NQ)
and
![](https://latex.codecogs.com/png.latex?\bg_white PM = MN = NP)
so
![](https://latex.codecogs.com/png.latex?\bg_white PMN)
and
![](https://latex.codecogs.com/png.latex?\bg_white QMN)
are equilateral triangles. In particular,
![](https://latex.codecogs.com/png.latex?\bg_white \angle PNQ = 120^{\circ})
.
As a result of these parallel lines, we have
![](https://latex.codecogs.com/png.latex?\bg_white \angle BRD = \angle BR'Q = \angle PNQ = 120^{\circ})
, so
![](https://latex.codecogs.com/png.latex?\bg_white \angle DSC = \angle DBC + \angle DCB = \frac{1}{2} \angle BCR + \frac{1}{2} \angle CBR = \frac{1}{2} (180^{\circ} - \angle BRC) = 30^{\circ})
.
Thus, the angle between the diagonals is
![](https://latex.codecogs.com/png.latex?\bg_white 30^{\circ})
, so the area of
![](https://latex.codecogs.com/png.latex?\bg_white ABCD)
is
![](https://latex.codecogs.com/png.latex?\bg_white \frac{1}{2} AC \cdot BD \sin(30^{\circ}) = \frac{1}{4} AC \cdot BD)
.