• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. J

    Integration

    Sorry friends . actual Question is \displaystyle \mathbf{\int\frac{(1+x)\sin x}{(x^2+2x)\cos^2 x-(1+x)\sin 2x}dx}
  2. J

    Sum of Digits

    Thanks RealiseNothing
  3. J

    Complex number

    If Z_{1}\;,Z_{2} and Z_{3} are complex numbers that lie on a straight line L and Z_{4} = aZ_{1}+bZ_{2}+Z_{3} also lies on L,Then the appropriate values of 'a' and 'b' are options:: (a)2,-5 (b)3,-7 (c)2,4 (d)None of these
  4. J

    Sum of Digits

    (1) Let N be the no. of 4 digit no. which conatain not more then 2 different Digit. Then the sum of digit of N is
  5. J

    Integration

    Can We solve it in terms of elementry function. \displaystyle \mathbf{\int\frac{(1+x)\sin x}{(x^2+2x)\cos^2 x+(1+x)\sin 2x}dx}
  6. J

    Counting

    How many of the first 1000 positive Integers has distinct Digits.
  7. J

    4 degree equation

    Let a,b,c,d be four integers such that ad is odd and bc is even, then ax^3+bx^2+cx+d = 0 has options:: (a) at least one irrational roots (b) all three rational roots (c) all three integral roots (d) none of these
  8. J

    integral

    Thanks Rolpsy
  9. J

    defeinite Integral

    If f(2-x) = f(2+x) and f(4-x) = f(4+x) and \displaystyle \int_{0}^{2}f(x)dx = 5. Then \displaystyle \int_{0}^{50}f(x)dx =
  10. J

    integral

    No Shadowdude i mean floor function. Rolpsy can you explain me the answer. Thanks
  11. J

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \displaystyle \int_{0}^{\infty}\frac{\ln(x)}{(a^2+x^2)^3}dx where a>0
  12. J

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \int_{0}^{\pi}\frac{\sin (2013x)}{\sin (x)}dx
  13. J

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x.\sin(x^2)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx
  14. J

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Let I = \int_2^4\ \frac{\sqrt{\ln(9-x)} dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}} = \int_2^4\ \frac{\sqrt{\ln(9-(2+4-x))} dx}{\sqrt{\ln(9-(2+4-x))}+\sqrt{\ln((2+4-x)+3)}} Using \int_{a}^{b}f(x)dx = \int_{a}^{b}f(a+b-x)dx I = \int_2^4\ \frac{\sqrt{\ln(9-x)}...
  15. J

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon answer..........................................
  16. J

    integral

    \displaystyle \int_{0}^{[x]}\left[x - \frac{1}{2}\right]dx = where [x] = greatest integer function
  17. J

    Rank of words

    Thanks friends Got it
  18. J

    digits divisible by 8

    Thanks Friends Got it
  19. J

    Trigonometric Equations

    if x \cos^3y+ 3x \cos y .\sin^2y= 14 and x\sin^3y +3x\cos^2y .\sin y =13, then find the value of x and y.
  20. J

    Letters arrangement

    Thanks Moderator
Top