• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. J

    Quadratic Inequality

    Find the values of\;a\; for which the in equation x^2 + ax + a^2 + 6a < 0\forall x\in (1,2)
  2. J

    digits divisible by 8

    Total no. of 7 digit no. formed by using the digit 1,2,3,4,5,6, 7,8,9 which is Divisible by 8 When (i) No Repetition (II) Repetition of Digit
  3. J

    Per

    Thanks friends got it
  4. J

    Rank of words

    1) The Letter of the word "ZENITH" are written in all possible orders. How many words are possible if all these written out as a Dictonary What is the rank of the word "ZENITH" 2) The Letter of the word "SURITI" are written in all possible orders. How many words are possible if all these...
  5. J

    Letters arrangement

    In how many ways 4 letters can be posted in 5 letter boxes. ans: = each of the 4 letters can be posted in any one of Letter boxes in 5 ways . So Using Principle of Multiplication Total no. of ways is = 5*5*5*5 = 5^4 But I have a confusion Can we not post all letters in one Letter Box...
  6. J

    Per

    How many ways there are to arrange the letter of the word "GARDEN" with the vowels in alphabet order.
  7. J

    Quadratic Inequality

    \bf{If \; -5 \leq \frac{x^2+ax+b}{x^2+2x+3}\leq 4\;\; and \;\; a,b\in \mathbb{N}. \; Then \; a^2+b^2\; = }
  8. J

    complex no

    Thanks Fus Ro Dah
  9. J

    series sum

    Thanks Johnpap
  10. J

    Permutation $ Combination

    Thanks johnpap
  11. J

    Permutation $ Combination

    \text{The\; no.\; of \; times \; The \; digit \; 5 \; can \; be \; written\; when\; listing \; Integer\; from \; 1\; to \; 1000}
  12. J

    series sum

    \text{Find \; Sum \; of \; n \; terms \; of \; following\; series} 1+\frac{x}{b_{1}}+\frac{x.(x+b_{1})}{b_{1}.b_{2}}+\frac{x.(x+b_{1})(x+b_{2})}{b_{1}.b_{2}.b_{3}}+................+\frac{x.(x+b_{1})..........(x+b_{n-1})}{b_{1}.b_{2}.........b_{n}}
  13. J

    2 Integrals

    Thanks rolpsy and asianese (2)
  14. J

    2 Integrals

    (1)\;\; \int \frac{1-\cot^{n-2}x}{\left(\tan x+\cot^{n-1}x\right)}dx (2)\;\; \int\frac{1}{x^6+1}dx
  15. J

    arithmetic progression

    \bf{If \; a^2+bc\;,b^2+ca\;,c^2+ab\; are \; in \; arithmetic \; progression \; (A.P)\;. Then \; prove \; that \; \frac{1}{a}\;,\frac{1}{b} \;, \frac{1}{c}\; are \; in \; A.P }
  16. J

    complex number

    \bf{find \;\; all \;\; Complex \;\; number \;\; z \;\; which \;\; satisfy\;\; \mid z \mid = \frac{1}{\mid z \mid} = \mid z-1 \mid }
  17. J

    definite integral

    \displaystyle \bf{\int_{1}^{3}\frac{\ln(2x+2)}{x^2+2x+15}dx} \bf{My \;\; Solution::} \bf{Let \;\; (x+1) = t\Leftrightarrow dx = dt\;\; and \;\; changing \;\; Limit\;,\; We\;\; Get} \bf{\int_{2}^{4}\frac{\ln(2t)}{t^2+\left(\sqrt{14}\right)^2}dx } \bf{Using\;\; I.B.P\;,We\;\; Get}...
  18. J

    integration questions

    \hspace{-16}\bf{\int%20\frac{1}{x^4+1}dx=\frac{1}{2}.\int\frac{2}{x^4+1}dx}$\\\\\\%20$\bf{=\frac{1}{2}\int\frac{\left((x^2+1)-(x^2-1)\right)}{x^4+1}dx}$\\\\\\%20$\bf{=\frac{1}{2}\int\frac{x^2+1}{x^4+1}dx-\frac{1}{2}\int\frac{x^2-1}{x^4+1}dx}$\\\\\\%20Now%20Let%20$\bf{\mathbb{I}=\frac{1}{2}\int\fr...
  19. J

    Harder 3u - Inequalities

    \hspace{-16}$If%20$\bf{a,b,c%3E0}$,%20Then%20$\bf{\mathbb{A.M}\geq%20\mathbb{G.M}\geq%20\mathbb{H.M}}$\\\\\\%20Means%20$\bf{\frac{a+b+c}{3}\geq%20\left(a.b.c\right)^{\frac{1}{3}}\geq%20\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}}$\\\\\\%20Now%20Here%20We%20have%20to%20prove%20that%20$\bf{\frac{...
  20. J

    Tough Integration problem

    \displaystyle \int_{0}^{1}\frac{\sqrt{1-x^2}}{1-x^2.\sin^2\;x}dx
Top