Re: HSC 2016 4U Marathon
$ a) After rigourous expansion and simplification the final integral is : $
2 \int_0^{\pi}{\cos{(x(n+1))}}dx = 0
$ b) $ I_0 =0 , I_1=\pi
$ c) Statement is true for n=0,1 (since) $
$ Assume n=k-1 and n=k is true $
I_{(k-1)}=\pi (k-1) , I_k= \pi k
$...