-Homogeneity in cosx and sinx
Example Q: sinx+cosx=1+sin2x
Solution: sinx+cosx=cos^2x+sin^2x+2sinxcosx
sinx+cosx=(cosx+sinx)^2
cosx+sinx=0 and cosx+sinx=1 etc
-Generating a telescoping sequence
Example Q: sinx+sin3x+...+sin(2n-1)x
Solution: times numerator and denominator by sinx
[(cos0-2x)+(cos2x-cos4x)+..+(cos(2n-1)x-cos2nx)]/2sinx
=sin^2nx/sinx
- First principles of integration (i.e. using upper bound and lower bounds rectangles which help generate inequalities or limits) or differentiaion (ie. log and exponential Q)
Example Q: Prove lim(n->inf) (1+x/n)^n=e^x
Solution: d/dx(Inx)=1/x.
d/dx(Inx)=lim(n->inf) [In(x+h)-In(x)]/h
1/x= lim(n->inf) In((x+h)/x)/h
1/x=lim(n->inf) In(1+h/x)^1/h
Ley y=1/x and let n=1/h
y=lim(n->inf) In(1+y/n)^n
rearranging
lim(n->inf) (1+x/n)^n=e^x
-Throw some geometry, probability, mechanics and recursion formulae
That's all i could think of/research