ozidolroks said:
can someone please help me with this question???
a secant which passes through the point ( 0,-a), cuts the parabola x2 = 4ay at P, Q with parameters p,q
If S is the focus show that 1 / PS + 1/ QS= 1/a
Let P be (2ap, ap²) and Q be (2aq, aq²)
Gradient of PQ:
m
PQ = (ap² - aq²) / (2ap - 2aq)
= a(p - q)(p + q) / 2a(p - q)
= (p + q) / 2
Equation of PQ:
y - ap² = (p + q)(x - 2ap) / 2
This line passes through (0, - a) so subbing it in:
- a - ap² = (p + q)(- 2ap) / 2
1 + p² = p(p + q)
1 + p² = p² + pq
=> pq = 1
With S(0, a):
PS = √[(2ap)² + (ap² - a)²]
= √[4a²p² + a²p
4 - 2a²p² + a²]
= √[4a²p² + a²p
4 - 2a²p² + a²]
= √[a²p
4 + 2a²p² + a²]
= √(ap² + a)²
= a(p² + 1)
[Technically its |a(p² + 1)| but since a(p² + 1) always positive with a > 0 and (p² + 1) > 0, we can remove the absolute values]
Similarly QS = a(q² + 1)
.: 1 / PS + 1 / QS = 1 / a(p² + 1) + 1 / a(q² + 1)
= (q² + 1 + p² + 1) / a(p² + 1)(q² + 1)
= (p² + q² + 2) / a(p²q² + p² + q² + 1)
But pq = 1
= (p² + q² + 2) / a(1 + p² + q² + 1)
= (p² + q² + 2) / a(p² + q² + 2)
= 1 / a