HSC 2012 MX2 Marathon (archive) (2 Viewers)

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,382
Gender
Male
HSC
2006
Re: 2012 HSC MX2 Marathon

Another question:

 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

Let f(x)=x*arcsin(x). As the product of two odd functions f is even, so it suffices to prove the assertion for 0<=x<1.

f is the product of two positive and increasing functions on the interval 0<=x<=1. Hence 0=f(0)<=f(x) < f(1)=pi/2 for all -1 < x < 1.
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

Using the Gaussian integral:

and Euler's identity:

deduce the following special integrals:

 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

The obvious method that comes to mind is looking at the sector contour with one side being part of the positive real axis, and an angle of pi/4 radians. The integral along the circular arc tends to zero which implies that half of the Gaussian integral is equal to the negative integral of e^(-z^2) over the diagonal ray. Which after applying Euler's identity gives us what we want.

Clearly this is beyond the scope of mx2 so perhaps you had another solution in mind.
 
Last edited:

Johnstan

Sickunt overload
Joined
Jun 15, 2012
Messages
168
Location
Compton
Gender
Undisclosed
HSC
2003
Uni Grad
2012
Re: 2012 HSC MX2 Marathon

The obvious method that comes to mind is looking at the sector contour with one side being part of the positive real axis, and an angle of pi/4 radians. The integral along the circular arc tends to zero which implies that half of the Gaussian integral is equal to the negative integral of e^(-z^2) over the diagonal ray. Which after applying Euler's identity gives us what we want.

Clearly this is beyond the scope of mx2 so perhaps you had another solution in mind.
Couldn't have said it better myself.
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

yes i have a simple solution in mind, involving only 4u properties applying those 2 formulaes
 

cutemouse

Account Closed
Joined
Apr 23, 2007
Messages
2,232
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

Probably using e^(i x^2) = cos (x^2) + i sin (x^2) and treat i as a constant and take the real and imaginary parts.

But yes, the complex analysis way is quite elegant I think.
 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

Probably using e^(i x^2) = cos (x^2) + i sin (x^2) and treat i as a constant and take the real and imaginary parts.

But yes, the complex analysis way is quite elegant I think.
He explained his method to me through PM and I don't think it is valid, but we will see if someone can post a valid solution using MX2 only techniques (I don't think this is possible).
 

Sindivyn

Member
Joined
Mar 4, 2012
Messages
194
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Could have generalised the problem by using the equation xy = k^2 instead =p

Oh and there is actually a nice and cheap way of calculating (or checking) the Implicit Derivative.




So for the equation xy= k^2, we have:



I know it doesn't seem worth it for this particular example, but it really helps when it comes to implicitly differentiating things like:

Would you mind going over the second example? Didn't really understand the method.
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

Would you mind going over the second example? Didn't really understand the method.
Partial f / Partial X means you differentiate f(x,y) purely with respect to x, and you treat Y as a constant.

Similarly for Partial f / Partial Y.
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

He explained his method to me through PM and I don't think it is valid, but we will see if someone can post a valid solution using MX2 only techniques (I don't think this is possible).
to prove my method i had to construct a quarter circle contour to show the integrals were the same, so the method works, but yeh it does need proof why it works using contour integration.
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

Here is a 4u question from cambridge, but done in a different way:

regions in plane.png
 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

Here is a decent question:

The three roots of the complex polynomial:



all lie on the unit circle in the complex plane. Prove that the three roots of:



also lie on the unit circle.
 
Joined
Sep 20, 2010
Messages
2,219
Gender
Undisclosed
HSC
2012
Re: 2012 HSC MX2 Marathon

I'm assuming a, b, c are real?
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top