Lmfaooooooooo.
This won't help >.<
I found the solution. Here x)
∫ x arctan²(x) dx
you need to solve this one by parts
u = arctan(x)
arctan(x) = u
x = tan(u)
dx = sec²(u) du
dx = (1 + tan²(u)) du
dx = (1 + x²) du
du = dx/(1 + x²)
-----------------
dv = x arctan(x) dx
now this also needs to be solved by parts
u = arctan(x)
du = dx/(1 + x²)
dv = xdx
v = ½ x²
∫ x arctan(x) dx
= ½ x² arctan(x) - ½ ∫x² dx / (1 + x²)
for the second bit use the trig sub x = tan(t)
dx = sec²(t) dt
= ½ x² arctan(x) - ½ ∫tan²(t) sec²(t) dt / (1 + tan²(t))
= ½ x² arctan(x) - ½ ∫tan²(t) sec²(t) dt / sec²(t)
= ½ x² arctan(x) - ½ ∫tan²(t) dt
= ½ x² arctan(x) - ½ ∫sec²(t) - 1 dt
= ½ x² arctan(x) - ½ (tan(t) - t)
= ½ [x² arctan(x) - x + arctan(x)]
= ½ [(x² + 1)arctan(x) - x]
-----------------
so in summary
u = arctan(x)
du = dx/(1 + x²)
dv = x arctan(x) dx
v = ½ [(x² + 1)arctan(x) - x]
so by parts:
∫ x arctan²(x) dx
= ½ arctan(x)[(x² + 1)arctan(x) - x] - ∫ ½ [(x² + 1)arctan(x) - x] dx/(1 + x²)
= ½ [(x² + 1)arctan²(x) - x arctan(x) - ∫ (x² + 1)arctan(x)dx/(1 + x²) + ∫ x dx/(1 + x²)]
= ½ [(x² + 1)arctan²(x) - x arctan(x) - ∫arctan(x) dx + ∫ x dx/(1 + x²)]
-----------------
lets look at
∫arctan(x) dx
do it by parts
u = arctan(x)
du = dx/(1 + x²)
dv = dx
v = x
∫arctan(x) dx = x arctan(x) - ∫x dx / (1 + x²)
------------------
= ½ [(x² + 1)arctan²(x) - x arctan(x) - x arctan(x) + ∫x dx / (1 + x²) + ∫ x dx/(1 + x²)]
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + 2∫x dx / (1 + x²)]
.........
let x = tan(t)
dx = sec²(t) dt
.........
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + 2∫ tan(t) sec²(t) dt / (1 + tan²(t))]
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + 2∫ tan(t) sec²(t) dt / sec²(t)]
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + 2∫ tan(t) dt]
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + 2∫sin(t) dt/cos(t)]
....
let u = cos(t)
du = -sin(t)dt
....
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) - 2∫ du/u]
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) - 2ln|u|] + C
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) - 2ln|cos(t)|] + C
..........
x = tan(t)
x² = tan²(t)
x² = sec²(t) - 1
x² + 1 = sec²(t)
sec(t) = √(x² + 1)
cos(t) = 1/√(x² + 1)
...............
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) - 2ln|cos(t)|] + C
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) - 2ln(1/√(x² + 1))] + C
= ½ [(x² + 1)arctan²(x) - 2x arctan(x) + ln(x² + 1)] + C
= ½ (x² + 1)arctan²(x) - x arctan(x) + ½ ln(x² + 1) + C