leehuan
Well-Known Member
- Joined
- May 31, 2014
- Messages
- 5,768
- Gender
- Male
- HSC
- 2015
Re: MATH2601 Linear Algebra/Group Theory Questions
![](https://latex.codecogs.com/png.latex?\bg_white \text{Prove that if }\alpha\textbf{v}=\textbf{0}\text{ then either }\alpha=0\text{ or }\textbf{v}=\textbf{0})
I have most of the proof covered up but I'm getting confused at the last bit.
![](https://latex.codecogs.com/png.latex?\bg_white \text{It is trivially true when }\alpha=0\text{ and }\textbf{v}=0.\\ \text{Otherwise, consider})
![](https://latex.codecogs.com/png.latex?\bg_white \begin{align*}\alpha\textbf{v}&=0 \\ \implies\alpha\textbf{v}-\alpha\textbf{v}&=-\alpha\textbf{v}\\ \implies (\alpha-\alpha)\textbf{v}=0\textbf{v}=\textbf{0}&=-\alpha\textbf{v}\\ \therefore \alpha\textbf{v}&=-\alpha\textbf{v}\end{align*})
![](https://latex.codecogs.com/png.latex?\bg_white \text{If }\alpha \neq 0\\ \begin{align*}\alpha^{-1} (\alpha\textbf{v})&= \alpha^{-1}(-\alpha\textbf{v})\\ \textbf{v}&=-\textbf{v}\\ 2\textbf{v}&=0\\ \textbf{v}&=0\end{align*})
All I'm really stuck on is how to prove that if v \neq 0 why must alpha be equal to 0
I have most of the proof covered up but I'm getting confused at the last bit.
All I'm really stuck on is how to prove that if v \neq 0 why must alpha be equal to 0