Hey there ! Ok here we go
So lets work on the left hand side of this question.
(1+cot /cosecx) - (1 + cosx/sinx) / (1/sinx)
Add (1 + cosx/sinx)
= (sinx+cosx/sinx) / (1/sinx)
Sin x is the denominator in both
.'. Sinx+cosx
Thats the left hand side.
Lets work with the right
(secx/tanx+cot)
= (1/cosx) / (sinx/cosx)/ (cosx/sinx)
= (1/cosx) / (sin^2x+cos^2x / sinxcosx)
sin^2x+cos^2x = 1
therefore: (1/cosx) / (1/ sinxcosx)
solce that and you get Sinx
Now we bring out last result and we get
Sinx+cosx-sinx
.'. = cosx